RESUMEN
During this COVID-19 pandemic, except steroid, none of the therapeutic measures have showed any evidence of efficacy. Traditionally jala-neti using lukewarm salted water remains a yogic way of maintaining upper airway hygiene. Saline irrigation decreases the concentration of inflammatory mediators (e.g. histamine, leukotriene etc.) in nasal secretions, reduces the severity and frequency of sinusitis, reduce need of antibiotic therapy and restores competency of nasal mucosa. Jala-neti is an integral part of six cleansing techniques of yogic kriyas practised in India since thousands of years. Jala-neti can clean the upper airways, prevents colonization of infectious agents, removes foreign bodies, prevents stasis of mucous and subsequently enhances the drainage of paranasal sinuses and maintain health. Regular practice of Jala neti improves nasal symptoms and overall health status of patients with sinusitis. Jala-neti sample can even be used for COVID-19 diagnosis. Povidone iodine (PVP-I) has been utilized as a time tested antimicrobial agent with broad spectrum coverage against wide range of bacteria and viruses. Anti-SARS-CoV-2 action of PVP-I was seen at a concentration as low as 0.45%. PVP-I is generally well tolerated upto 5%, however nasal ciliotoxicity is reported at this concentration, however, this toxicity is not reported with lower concentrations(1.25% and 0.5%). So, theoretically, by using neti-kriya with povidone iodine (0.5-1%) as irrigation solution can combine and enhance the protection against COVID-19 and this can be an important armor in the fight against COVID-19. However, this hypothesis needs to be validated in real life clinical trial scenario before implementing.
RESUMEN
Traditional Indian medical practices (Ayurveda, Siddha, Unani, and homeopathy) are a vast reservoir of knowledge about medicinal plants. The promising pharmacological properties of these plants have paved the way for developing therapy against novel Coronavirus (CoV) infection. The current review will summarize published works of literature on the effects of traditional Indian medicinal plants against acute respiratory infection (COVID-19, SARS, Influenza, and Respiratory syncytial virus infection) and registered clinical trials of traditional Indian herbal medicines in COVID-19. The current study aims to comprehensively evaluate the data of traditional Indian medicinal plants to warrant their use in COVID-19 management. PubMed, Embase, and Cochrane databases were searched along with different clinical trial databases. A total of 22 relevant traditional Indian medicinal plants (35 relevant studies) were included in the current study having potential antiviral properties against virus-induced respiratory illness along with promising immunomodulatory and thrombolytic properties. Further, 36 randomized and nonrandomized registered clinical trials were also included that were aimed at evaluating the efficacy of herbal plants or their formulations in COVID-19 management. The antiviral, immunomodulatory, and thrombolytic activities of the traditional Indian medicinal plants laid down a strong rationale for their use in developing therapies against SARS-CoV-2 infection. The study identified some important potential traditional Indian medicinal herbs such as Ocimum tenuiflorum, Tinospora cordifolia, Achyranthes bidentata, Cinnamomum cassia, Cydonia oblonga, Embelin ribes, Justicia adhatoda, Momordica charantia, Withania somnifera, Zingiber officinale, Camphor, and Kabusura kudineer, which could be used in therapeutic strategies against SARS-CoV-2 infection.
Asunto(s)
Tratamiento Farmacológico de COVID-19 , Medicina Ayurvédica , Preparaciones de Plantas/uso terapéutico , Plantas Medicinales , Humanos , India , Plantas Medicinales/química , Ensayos Clínicos Controlados Aleatorios como AsuntoRESUMEN
BACKGROUND: The receptor binding domain (RBD) of spike protein S1 domain SARS-CoV-2 plays a key role in the interaction with ACE2, which leads to subsequent S2 domain mediated membrane fusion and incorporation of viral RNA into host cells. In this study we tend to repurpose already approved drugs as inhibitors of the interaction between S1-RBD and the ACE2 receptor. METHODS: 2456 approved drugs were screened against the RBD of S1 protein of SARS-CoV-2 (target PDB ID: 6M17). As the interacting surface between S1-RBD and ACE2 comprises of bigger region, the interacting surface was divided into 3 sites on the basis of interactions (site 1, 2 and 3) and a total of 5 grids were generated (site 1, site 2, site 3, site 1+site 2 and site 2+site 3). A virtual screening was performed using GLIDE implementing HTVS, SP and XP screening. The top hits (on the basis of docking score) were further screened for MM-GBSA. All the top hits were further evaluated in molecular dynamics studies. Performance of the virtual screening protocol was evaluated using enrichment studies. RESULT: and discussion: We performed 5 virtual screening against 5 grids generated. A total of 42 compounds were identified after virtual screening. These drugs were further assessed for their interaction dynamics in molecular dynamics simulation. On the basis of molecular dynamics studies, we come up with 10 molecules with favourable interaction profile, which also interacted with physiologically important residues (residues taking part in the interaction between S1-RBD and ACE2. These are antidiabetic (acarbose), vitamins (riboflavin and levomefolic acid), anti-platelet agents (cangrelor), aminoglycoside antibiotics (Kanamycin, amikacin) bronchodilator (fenoterol), immunomodulator (lamivudine), and anti-neoplastic agents (mitoxantrone and vidarabine). However, while considering the relative side chain fluctuations when compared to the S1-RBD: ACE2 complex riboflavin, fenoterol, cangrelor and vidarabine emerged out as molecules with prolonged relative stability. CONCLUSION: We identified 4 already approved drugs (riboflavin, fenoterol, cangrelor and vidarabine) as possible agents for repurposing as inhibitors of S1:ACE2 interaction. In-vitro validation of these findings are necessary for identification of a safe and effective inhibitor of S1: ACE2 mediated entry of SARS-CoV-2 into the host cell.