Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(2)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38255858

RESUMEN

Cirsium japonicum is a medicinal plant that has been used due to its beneficial properties. However, extensive information regarding its therapeutic potential is scarce in the scientific literature. The antioxidant and anti-inflammatory potential of polyphenols derived from the Cirsium japonicum extracts (CJE) was systematically analyzed. High-performance liquid chromatography (HPLC) with mass spectrometry (MS) was used to examine the compounds in CJE. A total of six peaks of polyphenol compounds were identified in the extract, and their MS data were also confirmed. These bioactive compounds were subjected to ultrafiltration with LC analysis to assess their potential for targeting cyclooxygenase-2 (COX2) and DPPH. The outcomes showed which primary compounds had the highest affinity for binding both COX2 and DPPH. This suggests that components that showed excellent binding ability to DPPH and COX2 can be considered significant active substances. Additionally, in vitro analysis of CJE was carried out in macrophage cells after inducing inflammation with lipopolysaccharide (LPS). As a result, it downregulated the expression of two critical pro-inflammatory cytokines, COX2 and inducible nitric oxide synthase (iNOS). In addition, we found a solid binding ability through the molecular docking analysis of the selected compounds with inflammatory mediators. In conclusion, we identified polyphenolic compounds in CJE extract and confirmed their potential antioxidant and anti-inflammatory effects. These results may provide primary data for the application of CJE in the food and pharmaceutical industries with further analysis.


Asunto(s)
Antioxidantes , Cirsium , Antioxidantes/farmacología , Ciclooxigenasa 2 , Simulación del Acoplamiento Molecular , Antiinflamatorios/farmacología , Polifenoles/farmacología , Extractos Vegetales/farmacología
2.
Plant Physiol Biochem ; 203: 108070, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37816270

RESUMEN

Plant species have evolved diverse metabolic pathways to effectively respond to internal and external signals throughout their life cycle, allowing adaptation to their sessile and phototropic nature. These pathways selectively activate specific metabolic processes, producing plant secondary metabolites (PSMs) governed by genetic and environmental factors. Humans have utilized PSM-enriched plant sources for millennia in medicine and nutraceuticals. Recent technological advances have significantly contributed to discovering metabolic pathways and related genes involved in the biosynthesis of specific PSM in different food crops and medicinal plants. Consequently, there is a growing demand for plant materials rich in nutrients and bioactive compounds, marketed as "superfoods". To meet the industrial demand for superfoods and therapeutic PSMs, modern methods such as system biology, omics, synthetic biology, and genome editing (GE) play a crucial role in identifying the molecular players, limiting steps, and regulatory circuitry involved in PSM production. Among these methods, clustered regularly interspaced short palindromic repeats-CRISPR associated protein (CRISPR/Cas) is the most widely used system for plant GE due to its simple design, flexibility, precision, and multiplexing capabilities. Utilizing the CRISPR-based toolbox for metabolic engineering (ME) offers an ideal solution for developing plants with tailored preventive (nutraceuticals) and curative (therapeutic) metabolic profiles in an ecofriendly way. This review discusses recent advances in understanding the multifactorial regulation of metabolic pathways, the application of CRISPR-based tools for plant ME, and the potential research areas for enhancing plant metabolic profiles.


Asunto(s)
Sistemas CRISPR-Cas , Ingeniería Metabólica , Humanos , Sistemas CRISPR-Cas/genética , Edición Génica , Genoma de Planta , Productos Agrícolas/genética , Suplementos Dietéticos
3.
Artículo en Inglés | MEDLINE | ID: mdl-35664945

RESUMEN

The transcriptional machinery is composed of numerous factors that help to regulate gene expression in cells. The function and the fundamental role of transcription factors in different human diseases and cancer have been extensively researched. Activator protein-1 (AP-1) is an inducible transcription factor that consists of a diverse group of members including Jun, Fos, Maf, and ATF. AP-1 involves a number of processes such as proliferation, migration, and survival in cells. Dysfunctional AP-1 activity is seen in several diseases, especially cancer and inflammatory disorders. The AP-1 proteins are controlled by mitogen-activated protein kinases (MAPKs) and the NF-κB pathway. AP-1 inhibitors can be actively pursued as drug discovery targets in cancer therapy when used as a treatment to halt tumor progression. The consumption of phytochemicals in the diet is related to decreasing the incidence of cancer and proves to exhibit anticancer properties. Natural product targets AP-1 are effective cancer prevention and treatment options for various cancer types. Targeting AP-1 with natural products is an effective cancer treatment option for different cancer types. This review summarizes AP-1 subunit proteins, their structures, AP-1-related signaling, and its modulation by natural bioactive compounds.

4.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34445416

RESUMEN

The antioxidant and anti-inflammatory potentials of polyphenols contained in Gynura procumbens (GP) extract were systematically analyzed. Polyphenols in GP were analyzed for nine peaks using high-performance liquid chromatography (HPLC) combined with mass spectrometry (MS), and quantitatively determined through each standard. A total of nine polyphenolic compounds were identified in the samples and their MS data were tabulated. To determine the potential of bioactive ingredients targeting DPPH and COX-2, we analyzed them by ultrafiltration combined with LC. The results identified the major compounds exhibiting binding affinity for DPPH and COX-2. Caffeic acid, kynurenic acid, and chlorogenic acid showed excellent binding affinity to DPPH and COX-2, suggesting that they can be considered as major active compounds. Additionally, the anti-inflammatory effect of GP was confirmed in vitro. This study will not only be used to provide basic data for the application of GP to the food and pharmaceutical industries, but will also provide information on effective screening methods for other medicinal plants.


Asunto(s)
Antiinflamatorios/análisis , Antioxidantes/análisis , Asteraceae/química , Ciclooxigenasa 2/metabolismo , Polifenoles/análisis , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Compuestos de Bifenilo/metabolismo , Cromatografía Líquida de Alta Presión , Evaluación Preclínica de Medicamentos , Humanos , Ligandos , Lipopolisacáridos/efectos adversos , Espectrometría de Masas , Ratones , Picratos/metabolismo , Extractos Vegetales/química , Polifenoles/farmacología , Células RAW 264.7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA