Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Front Pharmacol ; 15: 1362161, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38425649

RESUMEN

Background: Psoriasis, a chronic skin condition characterized by systemic inflammation and altered gut microbiota, has been a target of Traditional Chinese Medicine (TCM) for centuries. Shenling Baizhu Powder (SLBZP), a TCM formulation, holds promise for treating inflammatory diseases, but its specific role in psoriasis and impact on gut microbiota is not fully understood. Objective: This study aims to elucidate the mechanism of SLBZP in treating psoriasis, integrating component analysis, network pharmacology, and experimental validation in mice models. Methods: We commenced with a detailed component analysis of SLBZP using liquid chromatograph and mass spectrometer (LC-MS). Network pharmacology analysis was used to predict the potential action targets and pathways of SLBZP in psoriasis. An in vivo experiment was conducted with psoriasis mice models, treated with SLBZP. Therapeutic effects were assessed via symptomatology, histopathology, and immunohistochemical analysis. Gut microbiota composition was analyzed using 16S rRNA gene sequencing. Results: A total of 42 main components and quality markers were identified, primarily from licorice and ginseng, including flavonoids, saponins and other markers. PPI topology analysis showed that TNF, IL-6, IL-1ß, TP53 and JUN were the core DEPs. 168 signaling pathways including lipid and atherosclerosis, AGE-RAGE signaling pathway, IL-17 signaling pathway and Th17 cell differentiation were enriched by KEGG. SLBZP demonstrated significant therapeutic effects on psoriasis in mice, with alterations in skin pathology and biomarkers. Additionally, notable changes in gut microbiota composition were observed post-treatment, indicating a possible gut-skin axis involvement. Conclusion: This research has pinpointed lipid metabolism as a key pathway in the treatment of psoriasis with SLBZP. It explores how SLBZP's modulation of gut microbiota and lipid metabolism can alleviate psoriasis, suggesting that balancing gut microbiota may reduce inflammation mediators and offer therapeutic benefits. This underscores lipid metabolism modulation as a potential new strategy in psoriasis treatment.

2.
Toxins (Basel) ; 15(7)2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37505675

RESUMEN

The jujube is one of the most popular fruits in China because of its delicious taste and high nutritional value. It has a long history of usage as an important food or traditional medicine. However, the jujube is easily infected by fungi, which causes economic losses and threatens human health. When the jujube was infected by Aspergillus niger (H1), the changes in nutritional qualities were determined, such as the content of total acid, vitamin C, reducing sugar, etc. In addition, the ability of A. niger (H1) to produce ochratoxin A (OTA) in different inoculation times and culture media was evaluated, and the content of OTA in jujubes was also analyzed. After jujubes were infected by A. niger (H1), the total acid, and vitamin C contents increased, while the total phenol content decreased, and the reducing sugar content increased after an initial decrease. Although A. niger (H1) infection caused the jujubes to rot and affected its quality, OTA had not been detected. This research provides a theoretical foundation for maximizing edible safety and evaluating the losses caused by fungal disease in jujubes.


Asunto(s)
Ocratoxinas , Ziziphus , Humanos , Frutas/química , Ocratoxinas/análisis , Aspergillus niger , Ácido Ascórbico , Azúcares , Contaminación de Alimentos/análisis
3.
Plant Physiol Biochem ; 199: 107714, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37119550

RESUMEN

Chitooligosaccharide (COS) is a low molecular weight product of chitosan degradation. Although COS induces plant resistance by activating phenylpropanoid metabolism, there are few reports on whether COS accelerates wound healing in potato tubers by promoting the deposition of phenolic acids and lignin monomers at wounds. The results showed that COS activated phenylalanine ammonialyase and cinnamate 4-hydroxylase and promoted the synthesis of cinnamic, caffeic, p-coumaric, ferulic acids, total phenolics and flavonoids. COS activated 4-coumaric acid coenzyme A ligase and cinnamyl alcohol dehydrogenase and promoted the synthesis of sinapyl, coniferyl and cinnamyl alcohols. COS also increased H2O2 levels and peroxidase activity and accelerated the deposition of suberin polyphenols and lignin on wounds. In addition, COS reduced weight loss and inhibited lesion expansion in tubers inoculated with Fusarium sulfureum. Taken together, COS accelerated wound healing in potato tubers by inducing phenylpropanoid metabolism and accelerating the deposition of suberin polyphenols and lignin at wounds.


Asunto(s)
Polifenoles , Solanum tuberosum , Polifenoles/metabolismo , Lignina/metabolismo , Solanum tuberosum/metabolismo , Peróxido de Hidrógeno/metabolismo , Quitina/metabolismo
4.
Int J Biol Macromol ; 236: 124036, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36921818

RESUMEN

Starch degradation occurs rapidly in stressed plants, but it is unclear how starch degradation occurs in potato tubers after they incur mechanical wounding. In this study, we found that wounding significantly upregulated the expression levels of StGWD, StAMY, StBAM, and StISA, and decreased the starch content of potato tubers. Meanwhile, wounding markedly upregulated the expression levels of StSUS, StBG, and StINV genes, and increased the content of sucrose, glucose, and fructose. Furthermore, wounding reduced the proportion of small starch granules and increase that of large as well as medium starch granules, in this way enhancing the average size distribution of starch. Initially, the hard surface layer of starch granules was removed by wounding, but the internal channels and other structures were only slightly affected. Taken together, the results show that wounding can accelerate starch degradation by promoting the accumulation of sucrose, glucose, and fructose, and the hydrolysis of starch granules in potato tubers.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Almidón/metabolismo , Glucosa/metabolismo , Sacarosa/metabolismo , Fructosa/metabolismo , Tubérculos de la Planta/metabolismo
5.
Food Chem ; 416: 135688, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36905709

RESUMEN

Lignin is a crucial component in the wound tissue of tubers. The biocontrol yeast Meyerozyma guilliermondii increased the activities of phenylalanine ammonia lyase, cinnamate-4-hydroxylase, 4-coenzyme coenzyme A ligase, and cinnamyl alcohol dehydrogenase, and elevated the levels of coniferyl, sinapyl, and p-coumaryl alcohol. The yeast also enhanced the activities of peroxidase and laccase, as well as the content of hydrogen peroxide. The lignin promoted by the yeast was identified as guaiacyl-syringyl-p-hydroxyphenyl type using Fourier transform infrared spectroscopy and two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance. Furthermore, a larger signal area for G2, G5, G'6, S2, 6, and S'2, 6 units was observed in the treated tubers, and the G'2 and G6 units were only detected in the treated tuber. Taken together, M. guilliermondii could promote deposition of guaiacyl-syringyl-p-hydroxyphenyl type lignin by activating the biosynthesis and polymerization of monolignols at the wounds of potato tubers.


Asunto(s)
Lignina , Solanum tuberosum , Lignina/química , Polimerizacion
6.
J Fungi (Basel) ; 9(2)2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36836261

RESUMEN

Codonopsis pilosula is an important Chinese herbal medicine. However, fresh C. pilosula is prone to decay during storage due to microorganism infections, seriously affecting the medicinal value and even causing mycotoxin accumulation. Therefore, it is necessary to study the pathogens present and develop efficient control strategies to mitigate their detrimental effects on the herbs during storage. In this study, fresh C. pilosula was collected from Min County in Gansu Province, China. The natural disease symptoms were observed during different storage stages, and the pathogens causing C. pilosula postharvest decay were isolated from the infected fresh C. pilosula. Morphological and molecular identification were performed, and pathogenicity was tested using Koch's postulates. In addition, the control of ozone was examined against the isolates and mycotoxin accumulation. The results indicated that the naturally occurring symptom increased progressively with the extension of storage time. The mucor rot caused by Mucor was first observed on day 7, followed by root rot caused by Fusarium on day 14. Blue mold disease caused by Penicillum expansum was detected as the most serious postharvest disease on day 28. Pink rot disease caused by Trichothecium roseum was observed on day 56. Moreover, ozone treatment significantly decreased the development of postharvest disease and inhibited the accumulations of patulin, deoxynivalenol, 15-Acetyl-deoxynivalenol, and HT-2 toxin.

7.
Toxins (Basel) ; 15(2)2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36828468

RESUMEN

Angelica sinensis, a Chinese herbal medicine, is susceptible to molds during storage, reducing its quality, and even generating mycotoxins with toxic effects on human health. Fresh A. sinensis was harvested from Min County of Gansu Province in China and kept at room temperature. Naturally occurring symptoms were observed during different storage stages. Molds were isolated and identified from the diseased A. sinensis using morphological and molecular biology methods. The impact of ozone treatment on postharvest disease development and mycotoxin production was investigated. The results indicated that A. sinensis decay began on day 7 of storage and progressed thereafter. Nine mold species were isolated and characterized: day 7, two Mucormycetes; day 14, Clonostachys rosea; day 21, two Penicillium species and Aspergillus versicolor; day 28, Alternaria alternata and Trichoderma atroviride; and day 49, Fusarium solani. Ozone treatment markedly inhibited the development of postharvest disease and the mycotoxin production (such as, patulin, 15-acetyl-deoxynivalenol, and sterigmatocystin) in the rotten tissue of A. sinensis inoculated with the nine isolates.


Asunto(s)
Angelica sinensis , Micotoxinas , Ozono , Patulina , Penicillium , Humanos , Esterigmatocistina
8.
J Appl Microbiol ; 133(4): 2631-2641, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35870147

RESUMEN

AIMS: Calmodulin (CaM), acts as a kind of multifunctional Ca2+ sensing protein, which is ubiquitous in fungi, is highly conserved across eukaryotes and is involved in the regulation of a range of physiological processes, including morphogenesis, reproduction and secondary metabolites biosynthesis. Our aim was to understand the characteristics and functions of AaCaM in Alternaria alternata, the causal agent of pear black spot. METHODS AND RESULTS: A 450 bp cDNA sequence of AaCaM gene of A. alternata was cloned by the PCR homology method. Sequence analysis showed that this protein encoded by AaCaM was a stable hydrophilic protein and had a high similarity to Neurospora crassa (CAA50271.1) and other fungi. RT-qPCR analysis determined that AaCaM was differentially upregulated during infection structural differentiation of A. alternata both on hydrophobic and pear wax extract-coated surface, with a 3.37-fold upregulation during the hydrophobic induced appressorium formation period (6 h) and a 1.46-fold upregulation during the infection hyphae formation period (8 h) following pear wax induction. Pharmaceutical analysis showed that the CaM-specific inhibitor, trifluoperazine (TFP), inhibited spore germination and appressorium formation, and affected toxins and melanin biosynthesis in A. alternata. CONCLUSIONS: AaCaM plays an important role in regulating infection structure differentiation and secondary metabolism of A. alternata. SIGNIFICANCE AND IMPACT OF STUDY: Our study provides a theoretical basis for further in-depth investigation of the specific role of AaCaM in the calcium signalling pathway underlying hydrophobic and pear wax-induced infection structure differentiation and pathogenicity of A. alternata.


Asunto(s)
Pyrus , Alternaria/metabolismo , Calcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , ADN Complementario/metabolismo , Melaninas/metabolismo , Preparaciones Farmacéuticas , Enfermedades de las Plantas/microbiología , Pyrus/genética , Pyrus/metabolismo , Pyrus/microbiología , Trifluoperazina/metabolismo
9.
Plant Physiol Biochem ; 185: 279-289, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35724622

RESUMEN

Calcium-dependent protein kinase (CDPK) is a Ca2+ sensor that can phosphorylate and regulate respiratory burst oxidase homolog (Rboh), inducing the production of O2-. However, little is known about how StCDPK23 affects ROS production in the deposition of suberin at potato tuber wounds by regulating StRbohs. In this study, we found that StCDPK23 was induced significantly by the wound in potato tubers, which contains a typical CDPK structure, and was highly homologous to AtCDPK13 in Arabidopsis. Subcellular localization of results showed that StCDPK23 was located in the nucleus and plasma membrane of N. benthamiana epidermis cells. StCDPK23-overexpressing plants and tubers were obtained via Agrobacterium transformation. The expression of StCDPK23 was significantly upregulated in the overexpressing tubers during healing and increased 2.3-fold at 5 d. The expression levels of StRbohs (A-E) were also upregulated in the overexpressing tubers. Among them, StrbohA showed significant expression in the early stage of healing, which was 16.3-fold higher than that of the wild-type tubers at 8 h of healing. Moreover, the overexpressing tubers produced more O2- and H2O2, which are 1.1-fold and 3.5-fold higher than that of the wild-type at 8 h, respectively. More SPP deposition was observed at the wounds of the overexpressing tubers. The thickness of SPP cell layers was 53.2% higher than that of the wild-type after 3 d of the wound. It is suggested that StCDPK23 may participate in the wound healing of potato tubers by regulating Strbohs, which mainly contributes to H2O2 production during healing.


Asunto(s)
Solanum tuberosum , Peróxido de Hidrógeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos de la Planta/genética , Tubérculos de la Planta/metabolismo , Solanum tuberosum/metabolismo , Cicatrización de Heridas/genética
10.
BMC Genomics ; 23(1): 263, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35382736

RESUMEN

BACKGROUND: Wound healing is a representative phenomenon of potato tubers subjected to mechanical injuries. Our previous results found that benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) promoted the wound healing of potato tubers. However, the molecular mechanism related to inducible wound healing remains unknown. RESULTS: Transcriptomic evaluation of healing tissues from potato tubers at three stages, namely, 0 d (nonhealing), 5 d (wounded tubers healed for 5 d) and 5 d (BTH-treated tubers healed for 5 d) using RNA-Seq and differentially expressed genes (DEGs) analysis showed that more than 515 million high-quality reads were generated and a total of 7665 DEGs were enriched, and 16 of these DEGs were selected by qRT-PCR analysis to further confirm the RNA sequencing data. Gene ontology (GO) enrichment analysis indicated that the most highly DEGs were involved in metabolic and cellular processes, and KEGG enrichment analysis indicated that a large number of DEGs were associated with plant hormones, starch and sugar metabolism, fatty acid metabolism, phenylpropanoid biosynthesis and terpenoid skeleton biosynthesis. Furthermore, a few candidate transcription factors, including MYB, NAC and WRKY, and genes related to Ca2+-mediated signal transduction were also found to be differentially expressed during wound healing. Most of these enriched DEGs were upregulated after BTH treatment. CONCLUSION: This comparative expression profile provided useful resources for studies of the molecular mechanism via these promising candidates involved in natural or elicitor-induced wound healing in potato tubers.


Asunto(s)
Solanum tuberosum , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Tubérculos de la Planta/genética , Tubérculos de la Planta/metabolismo , Solanum tuberosum/metabolismo , Transcriptoma , Cicatrización de Heridas/genética
11.
Birth Defects Res ; 114(3-4): 136-144, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34967143

RESUMEN

PURPOSE: To investigate the factors that influence the occurrence of anorectal malformations (ARMs). METHODS: From December 2018 to December 2019, 136 children treated for ARMs at the Children's Hospital of Chongqing Medical University were included in the case group. The control group consisted of children with intussusception or perianal abscesses. A uniform questionnaire was filled by the parents of the enrolled children. RESULTS: The birth weight of the cases was significantly lower than that of the controls (p < .01), and children with ARMs were more likely to be complicated with single umbilical artery (SUA) (p < .001). Maternal upper respiratory tract infection (adjusted odds ratio [ORadj ], 2.44; 95% confidence interval [CI], 1.29-4.63) and urogenital infection (ORadj , 2.67; 95% CI 1.11-6.38) during the first trimester of pregnancy, anemia during pregnancy (ORadj , 5.69; 95% CI, 1.01-32.07), and exposure to hazardous substances 6 months before pregnancy and during the first trimester of pregnancy (ORadj , 13.82; 95% CI, 3.86-49.35) are associated with increased risk of ARMs. Folic acid supplements (ORadj , 0.31; 95% CI, 0.14-0.65) and multivitamin (ORadj , 0.34; 95% CI, 0.15-0.79) had a protective effect on ARMs. Paternal drug use (ORadj , 9.17; 95% CI, 2.19-38.49) 6 months before their wives' conception increased the risk of ARMs. CONCLUSION: Maternal infection, anemia during pregnancy, and maternal hazardous substances exposure are possible risk factors for ARMs. Folic acid supplements and multivitamin can reduce the occurrence of ARMs. Meanwhile, paternal drug use may also be a risk factor for ARMs.


Asunto(s)
Malformaciones Anorrectales , Malformaciones Anorrectales/complicaciones , Malformaciones Anorrectales/epidemiología , Niño , Femenino , Ácido Fólico/uso terapéutico , Sustancias Peligrosas , Humanos , Embarazo , Factores de Riesgo , Vitaminas/toxicidad
12.
Food Chem ; 362: 130193, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34082290

RESUMEN

Lignin is an important component of the healing tissue in fruits. In this study, we treated muskmelon (Cucumis melo L. cv. "Manao") fruit with exogenous nitric oxide (NO) donor sodium nitroprusside (SNP) to observe and analyze its effect on lignin synthesis and accumulation during healing. Results showed that SNP treatment enhanced the contents of endogenous NO and H2O2, increased the activities of phenylalanine ammonia lyase, cinnamate 4 hydroxylase, cinnamyl alcohol dehydrogenase, and peroxidase, and raised the contents of sinapyl alcohol, coniferyl alcohol, coumaryl alcohol, and lignin. SNP augmented the hardness of the healing tissue and decreased its resilience, springiness, and cohesiveness. In addition, SNP treatment effectively reduced the weight loss and disease index of wounded muskmelons. All these results suggest that lignin metabolism mediated by NO play a crucial role in wound healing of muskmelons.


Asunto(s)
Cucumis melo/química , Cucumis melo/metabolismo , Frutas/química , Lignina/biosíntesis , Nitroprusiato/química , Oxidorreductasas de Alcohol , Frutas/metabolismo , Peróxido de Hidrógeno/metabolismo , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/química , Peroxidasa/metabolismo , Fenoles/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Fenilpropionatos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo
13.
Food Chem ; 309: 125608, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-31678673

RESUMEN

Benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) can improve wound healing of potato tubers; however, how the chemical regulates reactive oxygen species (ROS) generation and scavenging during wound healing is not completely understood. BTH at 100 mg·L-1 regulated changes in ROS generation and scavenging in healing tissues of potato tubers. A higher H2O2 content was presented in healing tissues of potato tubers, while cell membrane permeability and malondialdehyde content declined due to BTH treatment. Additionally, the activities and transcript level of enzymes related with ROS generation, including NADPH oxidase, peroxidase and polyamine oxidase, as well as enzymes involved in ROS scavenging, such as superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase, were significantly enhanced by BTH treatment. It is suggested that ROS metabolism might play a crucial role in wound healing of potato tubers mediated by BTH during postharvest.


Asunto(s)
Tubérculos de la Planta/efectos de los fármacos , Tubérculos de la Planta/metabolismo , Solanum tuberosum/efectos de los fármacos , Solanum tuberosum/metabolismo , Tiadiazoles/farmacología , Membrana Celular/efectos de los fármacos , Permeabilidad de la Membrana Celular/efectos de los fármacos , Enzimas/genética , Enzimas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Malondialdehído/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
14.
Food Chem ; 302: 125288, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31419774

RESUMEN

The effects of benzothiadiazole (BTH) on Penicillium expansum development, mitochondria energy metabolism, and changes in the number and structure of mitochondria in apple fruit were investigated after the fruit were immersed in 100 mg L-1 BTH for 10 min and then stored at 22 °C. The results indicated that BTH treatment significantly decreased the lesion diameter of fruit challenged with P. expansum; further, treatment enhanced the activities of mitochondrial respiratory metabolism-related enzymes, such as succinate dehydrogenase, cytochrome oxidase, H+-ATPase and Ca2+-ATPase, along with high ATP level and energy status in apple fruit during storage. Moreover, transmission electron microscopy results indicated that BTH treatment was beneficial for maintaining the number and structure of mitochondria during storage. The results suggested that BTH treatment enhanced ATP levels via mitochondrial energy metabolism, which might contribute to the induced resistance in apple fruit during storage.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Almacenamiento de Alimentos , Frutas/metabolismo , Malus/efectos de los fármacos , Malus/metabolismo , Mitocondrias/efectos de los fármacos , Tiadiazoles/farmacología , Frutas/microbiología , Malus/microbiología , Mitocondrias/metabolismo , Penicillium/fisiología
15.
Food Chem ; 289: 278-284, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-30955613

RESUMEN

Fusarium rot of muskmelon is a common and frequently-occurring postharvest disease, which leads to quality deterioration and neosolaniol (NEO) contamination. New strategies to control postharvest decay and reduce NEO contamination are of paramount importance. The effects of acetylsalicylic acid (ASA) treatment on the growth of Fusarium sulphureum in vitro, and Fusarium rot development and NEO accumulation in fruits inoculated with F. sulphureum in vivo were investigated. The results showed that ASA inhibited the growth of F. sulphureum, evident morphological and major cellular changes were observed under the microscope. In vivo testing showed that 3.2 mg/mL ASA significantly suppressed Fusarium rot development and NEO accumulation after 6 and 8 d of pathogen inoculation. Meanwhile, Tri gene expressions involved in NEO biosynthesis were down-regulated after treatment. Taken together, ASA treatment not only reduced Fusarium rot development by inhibiting the growth of F. sulphureum, but decreased NEO accumulation by suppressing NEO biosynthesis pathway.


Asunto(s)
Aspirina/farmacología , Cucurbitaceae/química , Tricotecenos/metabolismo , Cucurbitaceae/metabolismo , Cucurbitaceae/microbiología , Frutas/química , Frutas/metabolismo , Frutas/microbiología , Fusarium/efectos de los fármacos , Fusarium/crecimiento & desarrollo , Fusarium/metabolismo , Fusarium/ultraestructura , Enfermedades de las Plantas/prevención & control , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Tricotecenos/química
16.
Mol Brain ; 11(1): 14, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29534734

RESUMEN

Our previous studies demonstrated that vitamin A deficiency (VAD) can impair the postnatal cognitive function of rats by damaging the hippocampus. The present study examined the effects of retinoic acid (RA) on apoptosis induced by hypoxic-ischemic damage in vivo and in vitro, and investigated the possible signaling pathway involved in the neuroprotective anti-apoptotic effects of RA. Flow cytometry, immunofluorescence staining and behavioral tests were used to evaluate the neuroprotective and anti-apoptotic effects of RA. The protein and mRNA levels of RARα, PI3K, Akt, Bad, caspase-3, caspase-8, Bcl-2, Bax, and Bid were measured with western blotting and real-time PCR, respectively. We found impairments in learning and spatial memory in VAD group compared with vitamin A normal (VAN) and vitamin A supplemented (VAS) group. Additionally, we showed that hippocampal apoptosis was weaker in the VAN group than that in VAD group. Relative to the VAD group, the VAN group also had increased mRNA and protein levels of RARα and PI3K, and upregulated phosphorylated Akt/Bad levels in vivo. In vitro, excessively low or high RA signaling promoted apoptosis. Furthermore, the effects on apoptosis involved the mitochondrial membrane potential (MMP). These data support the idea that sustained VAD following hypoxic-ischemic brain damage (HIBD) inhibits RARα, which downregulates the PI3K/Akt/Bad and Bcl-2/Bax pathways and upregulates the caspase-8/Bid pathway to influence the MMP, ultimately producing deficits in learning and spatial memory in adolescence. This suggests that clinical interventions for HIBD should include suitable doses of VA.


Asunto(s)
Apoptosis/efectos de los fármacos , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Hipoxia-Isquemia Encefálica/patología , Mitocondrias/metabolismo , Vitamina A/farmacología , Vitamina A/uso terapéutico , Animales , Caspasas/metabolismo , Células Cultivadas , Suplementos Dietéticos , Femenino , Glucosa/deficiencia , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Hipoxia-Isquemia Encefálica/fisiopatología , Aprendizaje , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Oxígeno , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Receptor alfa de Ácido Retinoico/metabolismo , Transducción de Señal/efectos de los fármacos , Memoria Espacial/efectos de los fármacos , Tretinoina/farmacología , Tretinoina/uso terapéutico , Deficiencia de Vitamina A/tratamiento farmacológico , Deficiencia de Vitamina A/patología , Proteína X Asociada a bcl-2/metabolismo
17.
World J Microbiol Biotechnol ; 32(9): 142, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27430509

RESUMEN

The induced resistance of potato tuber (Solanum tuberosum cv. Xindaping) tissue against Fusarium sulphureum by a fungal elicitor from the incompatible pathogen Trichothecium roseum and its possible mechanism were studied. The results showed that the lesion development of the wound-inoculated potato tuber was significantly reduced by treatment with the fungal elicitor from T. roseum (P < 0.05). Inoculation with F. sulphureum on the 16th day after treatment with the fungal elicitor80 at 15.0 µg/ml had the best resistant effect in the potato tuber, with the diameter being only reduced by 47 % that of the control. In addition, the results also showed that the potato tuber treated with the fungal elicitor80 could systemically induce lignin deposition, total phenolic content, flavonoid content and defense enzymes, including three keys phenylpropanoid pathway (PAL, 4CL and C4H) and pathogenesis-related (GLU and CHT) enzymes. The fungal elicitor80 also enhanced the up-regulation of the transcription and expression of PAL, C4H, 4CL, GLU and CHT genes. The treatment with the fungal elicitor80 + F. sulphureum caused the marked and/or prompt enhancement of all indexes when compared to treatment with the fungal elicitor80 or inoculation with the pathogen alone. The results suggested that the fungal elicitor of T. roseum could significantly enhance defense responses in potato tuber against dry rot mainly due to the up-regulation of the transcription and expression of resistance-related genes as well as increasing the activity of resistance-related enzymes and antifungal compounds.


Asunto(s)
Ascomicetos/fisiología , Resistencia a la Enfermedad , Fusarium/fisiología , Propanoles/metabolismo , Solanum tuberosum/microbiología , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Tubérculos de la Planta/genética , Tubérculos de la Planta/microbiología , Solanum tuberosum/genética , Regulación hacia Arriba
18.
Artículo en Inglés | MEDLINE | ID: mdl-26425131

RESUMEN

Cumin seeds (Cuminum cyminum L.) have been commonly used in food flavoring and perfumery. In this study, cumin essential oil (CuEO) extracted from seeds was employed to investigate the anti-inflammatory effects in lipopolysaccharide- (LPS-) stimulated RAW 264.7 cells and the underlying mechanisms. A total of 26 volatile constituents were identified in CuEO by GC-MS, and the most abundant constituent was cuminaldehyde (48.773%). Mitochondrial-respiration-dependent 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) reduction assay demonstrated that CuEO did not exhibit any cytotoxic effect at the employed concentrations (0.0005-0.01%). Real-time PCR tests showed that CuEO significantly inhibited the mRNA expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), interleukin- (IL-) 1, and IL-6. Moreover, western blotting analysis revealed that CuEO blocked LPS-induced transcriptional activation of nuclear factor-kappa B (NF-κB) and inhibited the phosphorylation of extracellular signal regulated kinase (ERK) and c-Jun N-terminal kinase (JNK). These results suggested that CuEO exerted anti-inflammatory effects in LPS-stimulated RAW 264.7 cells via inhibition of NF-κB and mitogen-activated protein kinases ERK and JNK signaling; the chemical could be used as a source of anti-inflammatory agents as well as dietary complement for health promotion.

19.
J Proteomics ; 120: 179-93, 2015 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-25779462

RESUMEN

Benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) is a chemical plant elicitor capable of inducing disease resistance in many crops. In this study, the climacteric fruit muskmelon (cv. Yujinxiang) was treated with BTH at 0.1g/L for assaying the changes in physiology, biochemistry and protein profile during ripening. The results showed that BTH treatment enhanced respiration rate, while reduced titratable acid content and retarded the decline of fruit firmness and ascorbic acid content. Ethylene production increased after BTH treatment at early stages of ripening, but decreased after 6days of treatment. Of the detected protein spots separated by means of 2-DE, 69 spots changed in abundance significantly after BTH treatment. Fifty-two spots out of 69 were identified using MALDI-TOF/TOF by blasting against NCBInr database. Functional classification revealed that the protein species identified were related to defense and stress responses, protein synthesis, destination and storage, energy metabolism, primary metabolism, cell structure, secondary metabolism, signal transduction and transporters. This study demonstrates an overview of major physiological, biochemical and proteomic changes in muskmelon fruit during ripening after BTH treatment and provides potentially useful information for maintaining fruit quality and delaying the ripening and senescence process. BIOLOGICAL SIGNIFICANCE: The study offers new proteomic evidences for elucidating the regulatory mechanism of muskmelon fruit ripening by BTH treatment at proteomic level, and provides a valuable reference for further research on the relationship between fruit quality and induction disease resistance in BTH-treated fruits.


Asunto(s)
Cucumis melo/fisiología , Frutas/fisiología , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Tiadiazoles/farmacología , Cucumis melo/efectos de los fármacos , Frutas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/fisiología
20.
PLoS One ; 9(12): e114934, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25503794

RESUMEN

Vitamin A is a critical micronutrient for regulating immunity in many organisms. Our previous study demonstrated that gestational or early-life vitamin A deficiency decreases the number of immune cells in offspring. The present study aims to test whether vitamin A supplementation can restore lymphocyte pools in vitamin A-deficient rats and thereby improve the function of their intestinal mucosa; furthermore, the study aimed to identify the best time frame for vitamin A supplementation. Vitamin A-deficient pregnant rats or their offspring were administered a low-dose of vitamin A daily for 7 days starting on gestational day 14 or postnatal day 1, day 14 or day 28. Serum retinol concentrations increased significantly in all four groups that received vitamin A supplementation, as determined by high-performance liquid chromatography. The intestinal levels of secretory immunoglobulin A and polymeric immunoglobulin receptor increased significantly with lipopolysaccharide challenge in the rats that received vitamin A supplementation starting on postnatal day 1. The rats in this group had higher numbers of CD8+ intestinal intraepithelial lymphocytes, CD11C+ dendritic cells in the Peyer's patches and CD4+CD25+ T cells in the spleen compared with the vitamin A-deficient rats; flow cytometric analysis also demonstrated that vitamin A supplementation decreased the number of B cells in the mesenteric lymph nodes. Additionally, vitamin A supplementation during late gestation increased the numbers of CD8+ intestinal intraepithelial lymphocytes and decreased the numbers of B lymphocytes in the mesenteric lymph nodes. However, no significant differences in lymphocyte levels were found between the rats in the other two vitamin A supplement groups and the vitamin A-deficient group. In conclusion, the best recovery of a subset of lymphocytes in the offspring of gestational vitamin A-deficient rats and the greatest improvement in the intestinal mucosal immune response are achieved when vitamin A supplementation occurs during the early postnatal period.


Asunto(s)
Inmunidad Mucosa/inmunología , Intestinos/inmunología , Linfocitos/inmunología , Deficiencia de Vitamina A/inmunología , Vitamina A/administración & dosificación , Animales , Linfocitos B/inmunología , Suplementos Dietéticos , Femenino , Humanos , Mucosa Intestinal/inmunología , Linfocitos/efectos de los fármacos , Ganglios Linfáticos Agregados/inmunología , Embarazo , Ratas , Bazo/inmunología , Vitamina A/sangre , Vitamina A/inmunología , Deficiencia de Vitamina A/sangre , Deficiencia de Vitamina A/dietoterapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA