Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Ethnopharmacol ; 319(Pt 3): 117304, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37838294

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: In traditional Chinese medicine, Qi-zhi-wei-tong granule (QZWT) significantly reduced the major gastrointestinal and psychological symptoms of functional dyspepsia. AIM OF THE STUDY: We aimed to explore the therapeutic effect of QZWT treated chronic non-atrophic gastritis (CNAG) and to elucidate its potential mechanism. MATERIALS AND METHODS: The composition of QZWT was analysed by UPLC-Q/TOF-MS. The CNAG mice model was established by chronic restraint stress (CRS) in combination with iodoacetamide (IAA). Morphological staining was utilized to reveal the impact of QZWT on stomach and gut integrity. RT‒qPCR and ELISA were used to measure proinflammatory cytokines in the stomach, colon tissues and serum of CNAG mice. Next-generation sequencing of 16 S rDNA was applied to analyse the gut microbiota community of faecal samples. Finally, we investigated the faecal bile acid composition using GC‒MS. RESULTS: Twenty-one of the compounds from QZWT were successfully identified by UPLC-Q/TOF-MS analysis. QZWT enhanced gastric and intestinal integrity and suppressed inflammatory responses in CNAG mice. Moreover, QZWT treatment reshaped the gut microbiota structure by increasing the levels of the Akkermansia genus and decreasing the populations of the Desulfovibrio genus in CNAG mice. The alteration of gut microbiota was associated with gut bacteria BA metabolism. In addition, QZWT reduced BAs and especially decreased conjugated BAs in CNAG mice. Spearman's correlation analysis further confirmed the links between the changes in the gut microbiota and CNAG indices. CONCLUSIONS: QZWT can effectively inhibited gastrointestinal inflammatory responses of CNAG symptoms in mice; these effects may be closely related to restoring the balance of the gut microbiota and regulating BA metabolism to protect the gastric mucosa. This study provides a scientific reference for the pathogenesis of CNAG and the mechanism of QZWT treatment.


Asunto(s)
Gastritis , Microbioma Gastrointestinal , Animales , Ratones , Qi , Metabolismo de los Lípidos , Ácidos y Sales Biliares , Gastritis/tratamiento farmacológico
2.
Anat Rec (Hoboken) ; 303(8): 2154-2167, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32353209

RESUMEN

A syndrome (Zheng in Chinese) plays a critical role in disease identification, diagnosis, and treatment in traditional Chinese medicine (TCM). Clinically, the liver Qi stagnation and spleen deficiency syndrome (LQSSDS) is one of the most common syndrome patterns. Over the past few decades, several animal models have been developed to understand the potential mechanisms of LQSSDS, but until now, simulation of the syndrome is still unclear. Recently, several studies have confirmed that an animal model combining a disease and a syndrome is appropriate for simulating TCM syndromes. Overlapping previous studies have reported that depression is highly associated with LQSSDS; hence, we attempted to develop a rat model combining depression and LQSSDS. We exposed the rats to different durations of chronic unpredictable mild stress (CUMS). Subsequently, the evaluation indicators at macrolevel consisted of behavioral tests including open field test, sucrose preference test, and forced swim test, food intake, body weight, white adipose tissue, fecal water content, visceral hypersensitivity, and small bowel transit, and the evaluation indicators at microlevel included changes of hypothalamic-pituitary-adrenal axis. Serum D-xylose absorption was used to comprehensively confirm and assess whether the model was successful during the CUMS-induced process. The results showed that rats exposed to 6-week CUMS procedure exhibited significantly similar traits to the phenotypes of LQSSDS and depression. This study provided a new rat model for the LQSSDS and could potentially lead to a better understanding of the pathophysiology of LQSSDS and the development of new drugs for this syndrome.


Asunto(s)
Depresión/fisiopatología , Modelos Animales de Enfermedad , Hígado/fisiopatología , Medicina Tradicional China , Bazo/fisiopatología , Animales , Sistema Hipotálamo-Hipofisario/fisiopatología , Masculino , Sistema Hipófiso-Suprarrenal/fisiopatología , Qi , Ratas , Ratas Transgénicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA