Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(60): 125197-125213, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37482589

RESUMEN

The prevalence of organic solid waste worldwide has turned into a problem that requires comprehensive treatment on all fronts. The amount of agricultural waste generated by agro-based industries has more than triplet. It not only pollutes the environment but also wastes a lot of beneficial biomass resources. These wastes may be utilized as a different option/source for the manufacturing of many goods, including biogas, biofertilizers, biofuel, mushrooms and tempeh as the primary ingredients in numerous industries. Utilizing agro-industrial wastes as good raw materials may provide cost reduction and lower environmental pollution levels. Agro-industrial wastes are converted into biofuels, enzymes, vitamin supplements, antioxidants, livestock feed, antibiotics, biofertilizers and other compounds via solid-state fermentation (SSF). By definition, SSF is a method used when there is little to no free water available. As a result, it permits the use of solid materials as biotransformation substrates. Through SSF methods, a variety of microorganisms are employed to produce these worthwhile things. SSFs are therefore reviewed and discussed along with their impact on the production of value-added items. This review will provide thorough essential details information on recycling and the use of agricultural waste.


Asunto(s)
Agricultura , Residuos Industriales , Fermentación , Residuos Industriales/análisis , Residuos Sólidos , Biocombustibles
2.
Chemosphere ; 324: 138311, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36878368

RESUMEN

A novel kinetic model has been developed to explain the degradation of total petroleum hydrocarbons. Microbiome engineered biochar amendment may result in a synergistic impact on degradation of total petroleum hydrocarbons (TPHs). Therefore, the present study analyzed the potential of hydrocarbon-degrading bacteria A designated as Aeromonas hydrophila YL17 and B as Shewanella putrefaciens Pdp11 morphological characterized as rod shaped, anaerobic and gram-negative immobilized on biochar, and the degradation efficiency was measured by gravimetric analysis and gas chromatography-mass spectrometry (GC-MS). Whole genome sequencing of both strains revealed the existence of genes responsible for hydrocarbon degradation. In 60 days remediation setup, the treatment consisting of immobilization of both strains on biochar proved more efficient with less half-life and better biodegradation potentials compared to biochar without strains for decreasing the content of TPHs and n-alkanes (C12-C18). Enzymatic content and microbiological respiration showed that biochar acted as a soil fertilizer and carbon reservoir and enhanced microbial activities. The removal efficiency of hydrocarbons was found to be a maximum of 67% in soil samples treated with biochar immobilized with both strains (A + B), followed by biochar immobilized with strain B 34%, biochar immobilized with strain A 29% and with biochar 24%, respectively. A 39%, 36%, and 41% increase was observed in fluorescein diacetate (FDA) hydrolysis, polyphenol oxidase and dehydrogenase activities in immobilized biochar with both strains as compared to control and individual treatment of biochar and strains. An increase of 35% was observed in the respiration rate with the immobilization of both strains on biochar. While a maximum colony forming unit (CFU/g) was found 9.25 with immobilization of both strains on biochar at 40 days of remediation. The degradation efficiency was due to synergistic effect of both biochar and bacteria based amendment on the soil enzymatic activity and microbial respiration.


Asunto(s)
Microbiota , Petróleo , Contaminantes del Suelo , Petróleo/análisis , Suelo/química , Contaminantes del Suelo/análisis , Microbiología del Suelo , Hidrocarburos/metabolismo , Biodegradación Ambiental , Bacterias/genética , Bacterias/metabolismo
3.
Environ Res ; 216(Pt 3): 114399, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36309216

RESUMEN

Olive mill wastewater (OMW), produced during olive oil production, contains high levels of salt contents, organic matter, suspended particles, and toxic chemicals (particularly phenols), which all result in increased biological and chemical oxygen demand. Olive Oil Mills' Wastes (OMW), which have dark brown color with unpleasant smell, consist mainly of water, high organic (mainly phenols and polyphenols) and low inorganic compounds (e.g. potassium and phosphorus), as well as grease. OMW components can negatively affect soil's physical, chemical, and biological properties, rendering it phytotoxic. However, OMW can positively affect plants' development when it's applied to the soil after pretreatment and treatment processes due to its high mineral contents and organic matter. There are various approaches for removing impurities and the treatment of OMW including chemical, biological, thermal, physiochemical, and biophysical processes. Physical techniques involve filtration, dilution, and centrifugation. Thermal methods include combustion and pyrolysis; biological techniques use anaerobic and aerobic techniques, whereas adsorption and electrocoagulation act as physiochemical methods, and coagulation and flocculation as biophysical methods. In contrast, combined biological treatment methods use co-digestion and composting. A comparison of the effects of both treated and untreated OMW samples on plant development and soil parameters can help us to understand the potential role of OMW in increasing soil fertility. This review discusses the impacts of untreated OMW and treated OMW in terms of soil characteristics, seed germination, and plant growth. This review summarizes all alternative approaches and technologies for pretreatment, treatment, and recovery of valuable byproducts and reuse of OMW across the world.


Asunto(s)
Olea , Aguas Residuales , Aguas Residuales/química , Olea/química , Aceite de Oliva , Suelo/química , Fenoles/análisis , Residuos Industriales/análisis , Eliminación de Residuos Líquidos/métodos
4.
Environ Pollut ; 292(Pt B): 118343, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34662593

RESUMEN

The biodegradation of hazardous petroleum hydrocarbons has recently received a lot of attention because of its many possible applications. Bacillus marsiflavi strain was isolated from oil contaminated soil of Rawalpindi, Pakistan. Initial sequencing was done by 16s rRNA sequencing technique. Bac 144 had shown 78% emulsification index and 72% hydrophobicity content. Further, the strain displayed production of 15.5 mg/L phosphate sloubilization and 30.25 µg/ml indole acetic acid (IAA) in vitro assay. The strain showed 65% biodegradation of crude oil within 5 days by using Gas Chromatography-Mass Spectrometry (GC-MS) analysis. Whole Genome analysis of Bac 144 was performed by PacBio sequencing and results indicated that Bacillus marsiflavi Bac144 strain consisted of size of 4,417,505bp with closest neighbor Bacillus cereus ATCC 14579. The number of the coding sequence was 4662 and number of RNAs was 141. The GC content comprised 48.1%. Various genes were detected in genome responsible for hydrocarbon degradation and plant defense mechanism. The toxic effect of petroleum hydrocarbons in soil and its mitigation with Bac 144 was tested by soil experiment with three levels of oil contamination (5%, 10% and 15%). Soil enzymatic activity such as dehydrogenase and fluorescein diacetate (FDA) increased up to 49% and 40% with inoculation of Bac 144, which was considered to be correlated with hydrocarbon degradation recorded as 46%. An increase of 20%, 14% and 9% in shoot length of plant at 5%, 10% and 15% level of oil was recorded treated with Bac 144 as compared to untreated plants. A percent increase of 14.89%, 16.85%, and 13.87% in chlorophyll, carotenoid, and proline content of plant was observed by inoculation with Bac 144 under oil stress. Significant reduction of 14% and 18%, 21% was recorded in the malondialdehyde content of plant due to inoculation of Bac 144. A considerable increase of 21.33%, 19.5%, and 24.5% in super oxide dismutase, catalase, and peroxidase dismutase activity was also observed in plants inoculated with strain Bac 144. These findings suggested that Bac-144 can be considered as efficient candidate for bioremediation of hydrocarbons.


Asunto(s)
Bacillus , Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Bacillus/genética , Biodegradación Ambiental , Hidrocarburos , Petróleo/análisis , ARN Ribosómico 16S , Microbiología del Suelo , Contaminantes del Suelo/análisis
5.
Artículo en Chino | WPRIM | ID: wpr-972446

RESUMEN

Objective: To gather the fragmented literature on ethnobotany, phytochemistry and in-vitro activities of medicinal plants of Pakistan being used against common infections caused by Staphylococcus aureus (S. aureus). Methods: A large number of published and unpublished research studies related to the ethnomedicinal, phytochemical and anti-S. aureus activity of medicinal flora of Pakistan published from 1990-2018 were reviewed using online bibliographic databases such as PubMed, Web of Science, Science Direct, ResearchGate and libraries. Results: S. aureus can cause many human ailments including endocarditis, staphylococcal scalded skin syndrome, septic arthritis, respiratory problems with an estimated infection rate of 25%-35% across the globe. This review comprised of 86 medicinal plants. Data showed that people mostly used leaves (50%) for the preparation of traditional medicines. Correlation analysis on the reviewed data revealed that methanolic extract concentrations of medicinal plants was highly significantly positive correlated (r=0.8; P<0.01) with the S. aureus zone of inhibitions. S. aureus reportedly showed complete resistant to the commonly used antibiotic erythromycin. Isolated compounds like altheahexacosanyl lactone, cinnamaldehyde, niloticane, gobicusin A, asparacosin A, muzanzagenin, isoagatharesinol, friedelin, inophynone and eugenol were active against S. aureus. This study provided in-vitro proof for the flora of Pakistan used against different infections caused by S. aureus. Conclusions: Antibacterial agents from natural sources could be more effective against bacterial pathogens and will be helpful in minimizing the adverse effects of synthetic drugs, and hence provides a base for the pharmaceutical industries. http://www.apjtm.org/article.asp?issn=1995-7645;year=2018;volume=11;issue=6;spage=355;epage=368;aulast=Adnan;type=2.

6.
Artículo en Inglés | WPRIM | ID: wpr-825858

RESUMEN

Objective:To gather the fragmented literature on ethnobotany, phytochemistry and in-vitro activities of medicinal plants of Pakistan being used against common infections caused by Staphylococcus aureus (S. aureus).Methods:A large number of published and unpublished research studies related to the ethnomedicinal, phytochemical and anti-S. aureus activity of medicinal flora of Pakistan published from 1990-2018 were reviewed using online bibliographic databases such as PubMed, Web of Science, Science Direct, ResearchGate and libraries.Results:S. aureus can cause many human ailments including endocarditis, staphylococcal scalded skin syndrome, septic arthritis, respiratory problems with an estimated infection rate of 25%-35% across the globe. This review comprised of 86 medicinal plants. Data showed that people mostly used leaves (50%) for the preparation of traditional medicines. Correlation analysis on the reviewed data revealed that methanolic extract concentrations of medicinal plants was highly significantly positive correlated (r=0.8; P<0.01) with the S. aureus zone of inhibitions. S. aureus reportedly showed complete resistant to the commonly used antibiotic erythromycin. Isolated compounds like altheahexacosanyl lactone, cinnamaldehyde, niloticane, gobicusin A, asparacosin A, muzanzagenin, isoagatharesinol, friedelin, inophynone and eugenol were active against S. aureus. This study provided in-vitro proof for the flora of Pakistan used against different infections caused by S. aureus.Conclusions:Antibacterial agents from natural sources could be more effective against bacterial pathogens and will be helpful in minimizing the adverse effects of synthetic drugs, and hence provides a base for the pharmaceutical industries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA