Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 8(12): e81443, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24339929

RESUMEN

Restoration of movement following spinal cord injury (SCI) has been achieved using electrical stimulation of peripheral nerves and skeletal muscles. However, practical limitations such as the rapid onset of muscle fatigue hinder clinical application of these technologies. Recently, direct stimulation of alpha motor neurons has shown promise for evoking graded, controlled, and sustained muscle contractions in rodent and feline animal models while overcoming some of these limitations. However, small animal models are not optimal for the development of clinical spinal stimulation techniques for functional restoration of movement. Furthermore, variance in surgical procedure, targeting, and electrode implantation techniques can compromise therapeutic outcomes and impede comparison of results across studies. Herein, we present a protocol and large animal model that allow standardized development, testing, and optimization of novel clinical strategies for restoring motor function following spinal cord injury. We tested this protocol using both epidural and intraspinal stimulation in a porcine model of spinal cord injury, but the protocol is suitable for the development of other novel therapeutic strategies. This protocol will help characterize spinal circuits vital for selective activation of motor neuron pools. In turn, this will expedite the development and validation of high-precision therapeutic targeting strategies and stimulation technologies for optimal restoration of motor function in humans.


Asunto(s)
Terapia por Estimulación Eléctrica/métodos , Recuperación de la Función , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/terapia , Médula Espinal/fisiopatología , Animales , Interfaces Cerebro-Computador , Modelos Animales de Enfermedad , Espacio Epidural , Femenino , Calidad de Vida , Porcinos
2.
Pathophysiology ; 18(1): 21-9, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20537877

RESUMEN

Multiple Sclerosis (MS) is a complex disease with an unknown etiology and no effective cure, despite decades of extensive research that led to the development of several partially effective treatments. Researchers have only limited access to early and immunologically active MS tissue samples, and the modification of experimental circumstances is much more restricted in human studies compared to studies in animal models. For these reasons, animal models are needed to clarify the underlying immune-pathological mechanisms and test novel therapeutic and reparative approaches. It is not possible for a single mouse model to capture and adequately incorporate all clinical, radiological, pathological and genetic features of MS. The three most commonly studied major categories of animal models of MS include: (1) the purely autoimmune experimental autoimmune/allergic encephalomyelitis (EAE); (2) the virally induced chronic demyelinating disease models, with the main model of Theiler's Murine Encephalomyelitis Virus (TMEV) infection and (3) toxin-induced models of demyelination, including the cuprizone model and focal demyelination induced by lyso-phosphatidyl choline (lyso-lecithine). EAE has been enormously helpful over the past several decades in our overall understanding of CNS inflammation, immune surveillance and immune-mediated tissue injury. Furthermore, EAE has directly led to the development of three approved medications for treatment in multiple sclerosis, glatiramer acetate, mitoxantrone and natalizumab. On the other hand, numerous therapeutical approaches that showed promising results in EAE turned out to be either ineffective or in some cases harmful in MS. The TMEV model features a chronic-progressive disease course that lasts for the entire lifespan in susceptible mice. Several features of MS, including the role and significance of axonal injury and repair, the partial independence of disability from demyelination, epitope spread from viral to myelin epitopes, the significance of remyelination has all been demonstrated in this model. TMEV based MS models also feature several MRI findings of the human disease. Toxin-induced demyelination models has been mainly used to study focal demyelination and remyelination. None of the three main animal models described in this review can be considered superior; rather, they are best viewed as complementary to one another. Despite their limitations, the rational utilization and application of these models to address specific research questions will remain one of the most useful tools in studies of human demyelinating diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA