Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Med Genet A ; 185(10): 2976-2985, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34155781

RESUMEN

Reduced muscle tone, muscle weakness, and physical fatigue can impact considerably on quality of life for children with neurofibromatosis type 1 (NF1). Human muscle biopsies and mouse models of NF1 deficiency in muscle show intramyocellular lipid accumulation, and preclinical data have indicated that L-carnitine supplementation can ameliorate this phenotype. The aim of this study is to examine whether daily L-carnitine supplementation is safe and feasible, and will improve muscle strength and reduce fatigue in children with NF1. A 12-week Phase 2a trial was conducted using 1000 mg daily oral levocarnitine tartrate supplementation. Recruited children were between 8 and 12 years old with a clinical diagnosis of NF1, history of muscle weakness and fatigue, and naïve to L-carnitine. Primary outcomes were safety (self-reporting, biochemical testing) and compliance. Secondary outcomes included plasma acylcarnitine profiles, functional measures (muscle strength, long jump, handwriting speed, 6-minute-walk test [6MWT]), and parent-reported questionnaires (PedsQL™, CBCL/6-18). Six children completed the trial with no self-reported adverse events. Biochemical tests for kidney and liver function were normal, and the average compliance was 95%. Plasma acylcarnitine levels were low, but within a range not clinically linked to carnitine deficiency. For strength measures, there was a mean 53% increase in dorsiflexion strength (95% confidence interval [CI] 8.89-60.75; p = 0.02) and mean 66% increase in plantarflexion strength (95% CI 12.99-134.1; p = 0.03). In terms of muscle performance, there was a mean 10% increase in long jump distance (95% CI 2.97-16.03; p = 0.01) and 6MWT distance (95% CI 5.88-75.45; p = 0.03). Comparison with the 1000 Norms Project data showed a significant improvement in Z-score for all of these measures. Parent reports showed no negative impact on quality of life, and the perceived benefits led to the majority of individuals remaining on L-carnitine after the study. Twelve weeks of L-carnitine supplementation is safe and feasible in children with NF1, and a Phase 3 trial should confirm the efficacy of treatment.


Asunto(s)
Carnitina/administración & dosificación , Fatiga/dietoterapia , Debilidad Muscular/dietoterapia , Neurofibromatosis 1/dietoterapia , Cardiomiopatías/dietoterapia , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Carnitina/efectos adversos , Carnitina/deficiencia , Carnitina/metabolismo , Niño , Suplementos Dietéticos/efectos adversos , Fatiga/genética , Fatiga/patología , Femenino , Humanos , Hiperamonemia/dietoterapia , Hiperamonemia/metabolismo , Hiperamonemia/patología , Masculino , Fuerza Muscular/efectos de los fármacos , Debilidad Muscular/metabolismo , Debilidad Muscular/patología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiopatología , Enfermedades Musculares/dietoterapia , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Neurofibromatosis 1/complicaciones , Neurofibromatosis 1/metabolismo , Neurofibromatosis 1/patología , Calidad de Vida
2.
J Paediatr Child Health ; 56(6): 841-846, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32567782

RESUMEN

In 2016, a global consensus on the prevention, diagnosis and management of nutritional rickets was published. The bone and mineral working group of the Australasian Paediatric Endocrine Group provides a summary and highlights differences to previous Australian and New Zealand (ANZ) guidelines on vitamin D deficiency and their implications for clinicians. Key points are: (i) The International Consensus document is focused on nutritional rickets, whereas the ANZ guidelines were focused on vitamin D deficiency. (ii) Definitions for the interpretation of 25-hydroxy vitamin D (25OHD) levels do not differ between statements. (iii) The global consensus recommends that routine 25OHD screening should not be performed in healthy children and recommendations for vitamin D supplementation are not based solely on 25OHD levels. The Australasian Paediatric Endocrine Group bone and mineral working group supports that screening for vitamin D deficiency should be restricted to populations at risk. (iv) Recommendations from the global consensus for vitamin D dosages for the therapy of nutritional rickets (diagnosed based on history, physical examination, biochemical testing and a confirmation by X-rays) are higher than in ANZ publications. (v) The global consensus recommends the implementation of public health strategies such as universal supplementation with vitamin D from birth to 1 year of age and food fortification. We conclude that updated global recommendations for therapy of nutritional rickets complement previously published position statements for Australia and New Zealand. Screening, management and the implementation of public health strategies need to be further explored for Australia.


Asunto(s)
Raquitismo , Deficiencia de Vitamina D , Australia , Niño , Consenso , Humanos , Nueva Zelanda , Raquitismo/diagnóstico , Raquitismo/tratamiento farmacológico , Raquitismo/prevención & control , Vitamina D/uso terapéutico , Deficiencia de Vitamina D/diagnóstico , Deficiencia de Vitamina D/tratamiento farmacológico , Deficiencia de Vitamina D/prevención & control
3.
J Paediatr Child Health ; 56(1): 81-89, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31136042

RESUMEN

AIM: Paediatric vitamin D (25-hydroxyvitamin D (25OHD)) deficiency can lead to nutritional rickets and extra-skeletal complications. Compliance with daily therapy can be difficult, making high-dose, short-term vitamin D (stoss) therapy attractive to correct vitamin D deficiency. We compared the effectiveness and safety of standard versus stoss therapy in treating childhood 25OHD deficiency. METHODS: Children aged 2-16 years with 25OHD <50 nmol/L were randomised to either standard (5000 IU daily for 80 days) or stoss (100 000 IU weekly for 4 weeks) cholecalciferol. Participants underwent an evaluation of effectiveness and safety. The 25OHD level, random spot calcium: creatinine ratio (Ca:Cr) and compliance were measured at 12 weeks. RESULTS: A total of 151 children were enrolled in the study (68 standard and 83 stoss), median age 9 years (inter-quartile range (IQR): 6-12 years). Baseline 25OHD levels were 26 nmol/L (IQR: 19-35 nmol/L) and 32 nmol/L (IQR: 24-39 nmol/L) in the standard and stoss groups, respectively. At 12 weeks, the median 25OHD level was significantly greater in the standard versus stoss group (81 vs. 67 nmol/L; P = 0.005); however, >80% of participants in both groups achieved sufficiency (25OHD > 50 nmol/L) and had normal urinary Ca:Cr, with no significant difference seen between groups. Compliance was similar in the two groups. CONCLUSIONS: Compared to stoss, standard therapy achieved higher 25OHD levels at 12 weeks; however, in both groups, there was a similar proportion of participants who achieved 25OHD sufficiency, with no evidence of toxicity. Unlike other studies, simplifying the treatment regimen did not improve compliance. These results support stoss therapy as an effective and safe alternative therapy for the treatment of paediatric vitamin D deficiency.


Asunto(s)
Deficiencia de Vitamina D , Adolescente , Calcifediol , Calcio , Niño , Preescolar , Colecalciferol , Humanos , Vitamina D , Deficiencia de Vitamina D/complicaciones , Deficiencia de Vitamina D/tratamiento farmacológico , Vitaminas
4.
JBMR Plus ; 3(8): e10190, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31485552

RESUMEN

FGF23 is an important hormonal regulator of phosphate homeostasis. Together with its co-receptor Klotho, it modulates phosphate reabsorption and both 1α-hydroxylation and 24-hydroxylation in the renal proximal tubules. The most common FGF23-mediated hypophosphatemia is X-linked hypophosphatemia (XLH), caused by mutations in the PHEX gene. FGF23-mediated forms of hypophosphatemia are characterized by phosphaturia and low or low-normal calcitriol concentrations, and unlike nutritional rickets, these cannot be cured with nutritional vitamin D supplementation. Autosomal dominant and autosomal recessive forms of FGF23-mediated hypophosphatemias show a similar pathophysiology, despite a variety of different underlying genetic causes. An excess of FGF23 activity has also been associated with a number of other conditions causing hypophosphatemia, including tumor-induced osteomalacia, fibrous dysplasia of the bone, and cutaneous skeletal hypophosphatemia syndrome. Historically phosphate supplementation and therapy using analogs of highly active vitamin D (eg, calcitriol, alfacalcidol, paricalcitol, eldecalcitol) have been used to manage conditions involving hypophosphatemia; however, recently a neutralizing antibody for FGF23 (burosumab) has emerged as a promising treatment agent for FGF23-mediated disorders. This review discusses the progression of clinical trials for burosumab for the treatment of XLH and its recent availability for clinical use. Burosumab may have potential for treating other conditions associated with FGF23 overactivity, but these are not yet supported by trial data. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA