Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochemistry ; 60(36): 2704-2714, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34463474

RESUMEN

In synthetic peptides containing Gly and coded α-amino acids, one of the most common practices to enhance their helical extent is to incorporate a large number of l-Ala residues along with noncoded, strongly foldameric α-aminoisobutyric acid (Aib) units. Earlier studies have established that Aib-based peptides, with propensity for both the 310- and α-helices, have a tendency to form ordered three-dimensional structure that is much stronger than that exhibited by their l-Ala rich counterparts. However, the achiral nature of Aib induces an inherent, equal preference for the right- and left-handed helical conformations as found in Aib homopeptide stretches. This property poses challenges in the analysis of a model peptide helical conformation based on chirospectroscopic techniques like electronic circular dichroism (ECD), a very important tool for assigning secondary structures. To overcome such ambiguity, we have synthesized and investigated a thermally stable 14-mer peptide in which each of the Aib residues of our previously designed and reported analogue ABGY (where B stands for Aib) is replaced by Cα-methyl-l-valine (L-AMV). Analysis of the results described here from complementary ECD and 1H nuclear magnetic resonance spectroscopic techniques in a variety of environments firmly establishes that the L-AMV-containing peptide exhibits a significantly stronger preference compared to that of its Aib parent in terms of conferring α-helical character. Furthermore, being a chiral α-amino acid, L-AMV shows an intrinsic, extremely strong bias for a quite specific (right-handed) screw sense. These findings emphasize the relevance of L-AMV as a more appropriate unit for the design of right-handed α-helical peptide models that may be utilized as conformationally constrained scaffolds.


Asunto(s)
Aminoácidos/química , Ácidos Aminoisobutíricos/química , Péptidos/química , Valina/química , Dicroismo Circular/métodos , Modelos Moleculares , Conformación Proteica en Hélice alfa , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA