Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Process Impacts ; 24(1): 152-160, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-34985480

RESUMEN

Many factors affect the biodegradation kinetics of chemicals in test systems and the environment. Empirical knowledge is needed on how much test temperature, inoculum, test substances and co-substrates influence the biodegradation kinetics and microbial composition in the test. Water was sampled from the Gudenaa river in winter (2.7 °C) and summer (17 °C) (microbial inoculum) and combined with an aqueous stock solution of >40 petroleum hydrocarbons prepared by passive dosing. This resulted in low-concentration test systems that were incubated for 30 days at 2.7, 12 and 20 °C. Primary biodegradation kinetics, based on substrate depletion relative to abiotic controls, were determined with automated Solid Phase Microextraction coupled to GC/MS. Biodegradation kinetics were remarkably similar for summer and winter inocula when tested at the same temperature, except when cooling summer inoculum to 2.7 °C which delayed degradation relative to winter inoculum. Amplicon sequencing was applied to determine shifts in the microbial composition between season and during incubations: (1) the microbial composition of summer and winter inocula were remarkably similar, (2) the incubation and the incubation temperature had both a clear impact on the microbial composition and (3) the effect of adding >40 petroleum hydrocarbons at low test concentrations was limited but resulted in some proliferation of the known petroleum hydrocarbon degraders Nevskia and Sulfuritalea. Overall, biodegradation kinetics and its temperature dependency were very similar for winter and summer inoculum, whereas the microbial composition was more affected by incubation and test temperature compared to the addition of test chemicals at low concentrations.


Asunto(s)
Petróleo , Biodegradación Ambiental , Hidrocarburos , Cinética , Estaciones del Año , Temperatura
2.
Environ Sci Technol ; 55(9): 6150-6159, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33829772

RESUMEN

Petroleum products and essential oils are produced and used in large amounts and are categorized as "Substances of Unknown or Variable composition, Complex reaction products or Biological materials (UVCBs)." These UVCBs are notorious difficult-to-test substances, since they are complex mixtures of hydrophobic and volatile compounds. This study introduces two passive dosing (PD) approaches for whole UVCB toxicity testing: (1) headspace PD applies the UVCB and purified lipid oil as a donor to control exposure via the headspace and (2) silicone rod PD applies UVCB-loaded silicone rods to control exposure via an aqueous test medium and headspace. Headspace gas chromatography-mass spectrometry measurements were used to cross-validate the approaches at the saturation level and to confirm exposure and maintain mixture composition at varying donor concentration levels. Both approaches were applied to whole-mixture toxicity tests of petroleum and essential oil UVCBs with daphnia and algae. Finally, the observed toxicity was linked to concentrations in the donor and in lipid membranes at equilibrium with the donors. Dose-response curves were similar across the dosing approaches and tested species for petroleum products but differed by an order of magnitude between essential oils and PD systems. All observed toxic effects were consistent with baseline toxicity, and no excess mixture toxicity was observed.


Asunto(s)
Aceites Volátiles , Petróleo , Animales , Daphnia , Interacciones Hidrofóbicas e Hidrofílicas , Aceites Volátiles/toxicidad , Petróleo/toxicidad , Pruebas de Toxicidad
3.
Environ Sci Process Impacts ; 22(11): 2172-2180, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33000828

RESUMEN

The biodegradation kinetics of UVCB substances (unknown or variable composition, complex reaction products or biological materials) should be determined below the solubility limit to avoid experimental artefacts by the non-dissolved mixture. Recently, we reported delayed biodegradation kinetics of single petroleum hydrocarbons even at concentrations just below the solubility limit and attributed this to toxicity. The present study aimed to determine the concentration effect on biodegradation kinetics for constituents in two UVCBs, using surface water from a rural stream as the inoculum. Parallel biodegradation tests of diesel and lavender oil were conducted at concentrations just below the solubility limit and two orders of magnitude lower. The biodegradation kinetics of diesel oil constituents were generally similar at the two concentrations, which coincided with the stimulation of bacterial productivity (growth) at both concentrations, determined by [3H]leucine incorporation. By contrast, the biodegradation of lavender oil constituents was significantly delayed or even halted at the high test concentration. This was consistent with lavender oil stimulating bacterial growth at low concentration but inhibiting it at high concentration. The delayed biodegradation kinetics of lavender oil constituents at high concentration was best explained by mixture toxicity near the solubility limit. Consequently, biodegradation testing of hydrophobic UVCBs should be conducted at low, environmentally relevant concentrations ensuring that mixture toxicity does not affect the biodegradation kinetics.


Asunto(s)
Petróleo , Biodegradación Ambiental , Hidrocarburos , Interacciones Hidrofóbicas e Hidrofílicas , Cinética
4.
Environ Sci Technol ; 54(8): 4974-4983, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32142613

RESUMEN

Petroleum products and essential oils are complex mixtures of hydrophobic and volatile chemicals and are categorized as substances of unknown or variable composition, complex reaction products, or biological materials (UVCBs). In aquatic testing and research of such mixtures, it is challenging to establish initial concentrations without the addition of cosolvents, to maintain constant concentrations during the test, and to keep a constant mixture composition in dilution series and throughout test duration. Passive dosing was here designed to meet these challenges by maximizing the surface area (Adonor/Vmedium = 3.8 cm2/mL) and volume (Vdonor/Vmedium > 0.1 L/L) of the passive dosing donor in order to ensure rapid mass transfer and avoid donor depletion for all mixture constituents. Cracked gas oil, cedarwood Virginia oil, and lavender oil served as model mixtures. This study advances the field by (i) showing accelerated passive dosing kinetics for 68 cracked gas oil constituents with typical equilibration times of 5-10 min and for 21 cederwood Virginia oil constituents with typical equilibration times < 1 h, (ii) demonstrating how to control mixture concentration and composition in aquatic tests, and (iii) discussing the fundamental differences between solvent spiking, water-accommodated fractions, and passive dosing.


Asunto(s)
Petróleo , Contaminantes Químicos del Agua/análisis , Mezclas Complejas , Interacciones Hidrofóbicas e Hidrofílicas , Virginia
5.
Chemosphere ; 184: 400-407, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28609746

RESUMEN

Biodegradation is a dominant removal process for many organic pollutants, and biodegradation tests serve as tools for assessing their environmental fate within regulatory risk assessment. In simulation tests, the inoculum is not standardized, varying in microbial quantity and quality, thereby potentially impacting the observed biodegradation kinetics. In this study we investigated the effect of inoculum origin on the biodegradation kinetics of hydrocarbons for five inocula from surface waters varying in urbanization and thus expected pre-exposure to petroleum hydrocarbons. A new biodegradation method for testing mixtures of hydrophobic chemicals at trace concentrations was demonstrated: Aqueous solutions containing 9 hydrocarbons were generated by passive dosing and diluted with surface water resulting in test systems containing native microorganisms exposed to test substances at ng-µg/L levels. Automated Headspace Solid Phase Microextraction coupled to GC-MS was applied directly to these test systems to determine substrate depletion relative to abiotic controls. Lag phases were generally less than 8 days. First order rate constants were within one order of magnitude for each hydrocarbon in four of the five waters but lower in water from a rural lake. The sequence of degradation between the 9 hydrocarbons showed similar patterns in the five waters indicating the potential for using selected hydrocarbons for benchmarking between biodegradation tests. Degradation half-times were shorter than or within one order of magnitude of BioHCwin predictions for 8 of 9 hydrocarbons. These results showed that location choice is important for biodegradation kinetics and can provide a relevant input to aquatic exposure and fate models.


Asunto(s)
Biodegradación Ambiental , Hidrocarburos/metabolismo , Inoculantes Agrícolas , Agua Dulce , Cromatografía de Gases y Espectrometría de Masas , Cinética , Petróleo/metabolismo , Microextracción en Fase Sólida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA