Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Glia ; 71(10): 2437-2455, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37417428

RESUMEN

Diverse subpopulations of astrocytes tile different brain regions to accommodate local requirements of neurons and associated neuronal circuits. Nevertheless, molecular mechanisms governing astrocyte diversity remain mostly unknown. We explored the role of a zinc finger transcription factor Yin Yang 1 (YY1) that is expressed in astrocytes. We found that specific deletion of YY1 from astrocytes causes severe motor deficits in mice, induces Bergmann gliosis, and results in simultaneous loss of GFAP expression in velate and fibrous cerebellar astrocytes. Single cell RNA-seq analysis showed that YY1 exerts specific effects on gene expression in subpopulations of cerebellar astrocytes. We found that although YY1 is dispensable for the initial stages of astrocyte development, it regulates subtype-specific gene expression during astrocyte maturation. Moreover, YY1 is continuously needed to maintain mature astrocytes in the adult cerebellum. Our findings suggest that YY1 plays critical roles regulating cerebellar astrocyte maturation during development and maintaining a mature phenotype of astrocytes in the adult cerebellum.


Asunto(s)
Astrocitos , Yin-Yang , Animales , Ratones , Astrocitos/metabolismo , Cerebelo/metabolismo , Neuronas/metabolismo , Factores de Transcripción/metabolismo
2.
Oncogenesis ; 8(6): 37, 2019 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-31142741

RESUMEN

Glioblastoma multiforme (GBM) is a primary brain tumor characterized by extensive necrosis and immunosuppressive inflammation. The mechanisms by which this inflammation develops and persists in GBM remain elusive. We identified two cytokines interleukin-1ß (IL-1) and oncostatin M (OSM) that strongly negatively correlate with patient survival. We found that these cytokines activate RelB/p50 complexes by a canonical NF-κB pathway, which surprisingly drives expression of proinflammatory cytokines in GBM cells, but leads to their inhibition in non-transformed astrocytes. We discovered that one allele of the gene encoding deacetylase Sirtuin 1 (SIRT1), needed for repression of cytokine genes, is deleted in 80% of GBM tumors. Furthermore, RelB specifically interacts with a transcription factor Yin Yang 1 (YY1) in GBM cells and activates GBM-specific gene expression programs. As a result, GBM cells continuously secrete proinflammatory cytokines and factors attracting/activating glioma-associated microglia/macrophages and thus, promote a feedforward inflammatory loop.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA