Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Ther Nucleic Acids ; 31: 276-292, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36726407

RESUMEN

The α-tocotrienol (TCT) form of natural vitamin E is more potent than the better known α-tocopherol against stroke. Angiographic studies of canine stroke have revealed beneficial cerebrovascular effects of TCT. This work seeks to understand the molecular basis of such effect. In mice, TCT supplementation improved perfusion at the stroke-affected site by inducing miR-1224. miRNA profiling of a laser-capture-microdissected stroke-affected brain site identified miR-1224 as the only vascular miR induced. Lentiviral knockdown of miR-1224 significantly blunted the otherwise beneficial effects of TCT on stroke outcomes. Studies on primary brain microvascular endothelial cells revealed direct angiogenic properties of miR-1224. In mice not treated with TCT, advance stereotaxic delivery of an miR-1224 mimic to the stroke site markedly improved stroke outcomes. Mechanistic studies identified Serpine1 as a target of miR-1224. Downregulation of Serpine1 augmented the angiogenic response of the miR-1224 mimic in the brain endothelial cells. The inhibition of Serpine1, by dietary TCT and pharmacologically, increased cerebrovascular blood flow at the stroke-affected site and protected against stroke. This work assigns Serpine1, otherwise known to be of critical significance in stroke, a cerebrovascular function that worsens stroke outcomes. miR-1224-dependent inhibition of Serpine1 can be achieved by dietary TCT as well as by the small-molecule inhibitor TM5441.

2.
Mol Nutr Food Res ; 66(8): e2100852, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35073444

RESUMEN

SCOPE: Reactive oxygen species production by innate immune cells plays a central role in host defense against invading pathogens at wound-site. A weakened host-defense results in persistent infection leading to wound chronicity. Fermented Papaya Preparation (FPP), a complex sugar matrix, bolsters respiratory burst activity and improves wound healing outcomes in chronic wound patients. The objective of the current study was to identify underlying molecular factor/s responsible for augmenting macrophage host defense mechanisms following FPP supplementation. METHODS AND RESULTS: In depth LC-MS/MS analysis of cells supplemented with FPP led to identification of myo-inositol as a key determinant of FPP activity towards improving macrophage function. Myo-inositol, in quantities that is present in FPP, significantly improved macrophage respiratory burst and phagocytosis via de novo synthesis pathway of ISYNA1. In addition, myo-inositol transporters, HMIT and SMIT1, played a significant role in such activity. Blocking these pathways using siRNA attenuated FPP-induced improved macrophage host defense activities. FPP supplementation emerged as a novel approach to increase intracellular myo-inositol levels. Such supplementation also modified wound microenvironment in chronic wound patients to augment myo-inositol levels in wound fluid. CONCLUSION: These observations indicate that myo-inositol in FPP influences multiple aspects of macrophage function critical for host defense against invading pathogens.


Asunto(s)
Azúcares , Espectrometría de Masas en Tándem , Cromatografía Liquida , Humanos , Inositol/farmacología , Macrófagos/metabolismo
3.
Sci Rep ; 10(1): 20184, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33214614

RESUMEN

Urolithin A (UA) is a natural compound that is known to improve muscle function. In this work we sought to evaluate the effect of UA on muscle angiogenesis and identify the underlying molecular mechanisms. C57BL/6 mice were administered with UA (10 mg/body weight) for 12-16 weeks. ATP levels and NAD+ levels were measured using in vivo 31P NMR and HPLC, respectively. UA significantly increased ATP and NAD+ levels in mice skeletal muscle. Unbiased transcriptomics analysis followed by Ingenuity Pathway Analysis (IPA) revealed upregulation of angiogenic pathways upon UA supplementation in murine muscle. The expression of the differentially regulated genes were validated using quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). Angiogenic markers such as VEGFA and CDH5 which were blunted in skeletal muscles of 28 week old mice were found to be upregulated upon UA supplementation. Such augmentation of skeletal muscle vascularization was found to be bolstered via Silent information regulator 1 (SIRT1) and peroxisome proliferator-activated receptor-gamma coactivator-1-alpha (PGC-1α) pathway. Inhibition of SIRT1 by selisistat EX527 blunted UA-induced angiogenic markers in C2C12 cells. Thus this work provides maiden evidence demonstrating that UA supplementation bolsters skeletal muscle ATP and NAD+ levels causing upregulated angiogenic pathways via a SIRT1-PGC-1α pathway.


Asunto(s)
Cumarinas/farmacología , Músculo Esquelético/efectos de los fármacos , NAD/metabolismo , Sirtuina 1/metabolismo , Adenosina Trifosfato/metabolismo , Administración Oral , Animales , Cumarinas/administración & dosificación , Perfilación de la Expresión Génica , Masculino , Ratones Endogámicos C57BL , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Neovascularización Fisiológica/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Reproducibilidad de los Resultados
4.
Asian Pac J Trop Med ; 7(1): 21-5, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24418077

RESUMEN

OBJECTIVE: To evaluate the antidiabetic and antioxidant potential of Emblica officinalis (E. officinalis) fruit on normal and type 2 diabetic rats. METHODS: Type 2 diabetes was induced into the male Long-Evans rats. The rats were divided into nine groups including control groups receiving water, type 2 diabetic controls, type 2 diabetic rats treated with glibenclamide (T2GT) and type 2 diabetic rats treated with aqueous extract of fruit pulp of E. officinalis. They were fed orally for 8 weeks with a single feeding. Blood was collected by cutting the tail tip on 0 and 28 days and by decapitation on 56 day. Packed red blood cells and serum were used for evaluating different biochemical parameters. RESULTS: Four weeks administration of aqueous extract of E. officinalis improved oral glucose tolerance in type 2 rats and after 8 weeks it caused significant (P<0.007) reduction in fasting serum glucose level compared to 0 day. Triglycerides decreased by 14% but there was no significant change in serum ALT, creatinine, cholesterol and insulin level in any group. Furthermore, reduced erythrocyte malondialdehyde level showed no significant change (P<0.07) but reduced glutathione content was found to be increased significantly (P<0.05). CONCLUSIONS: The aqueous extract of E. officinalis has a promising antidiabetic and antioxidant properties and may be considered for further clinical studies in drug development.


Asunto(s)
Antioxidantes/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Hipoglucemiantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Phyllanthus emblica/química , Extractos Vegetales/farmacología , Alanina Transaminasa/sangre , Análisis de Varianza , Animales , Antioxidantes/uso terapéutico , Glucemia/efectos de los fármacos , Creatinina/sangre , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glucosa/metabolismo , Glutatión/sangre , Hipoglucemiantes/uso terapéutico , Insulina/sangre , Masculino , Malondialdehído/sangre , Extractos Vegetales/uso terapéutico , Ratas , Ratas Long-Evans
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA