Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomed Pharmacother ; 170: 116013, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38104416

RESUMEN

The Wnt/ß-catenin pathway's significance in cancer initiation, progression, and stem cell biology underscores its therapeutic potential. However, the clinical application of Wnt inhibitors remains limited due to challenges posed by off-target effects and complex cross-talk of Wnt signaling with other pathways. In this study, we leveraged a zebrafish model to perform a robust and rapid drug screening of 773 FDA-approved compounds to identify Wnt/ß-catenin inhibitors with minimal toxicity. Utilizing zebrafish expressing a Wnt reporter, we identified several drugs that suppressed Wnt signaling without compromising zebrafish development. The efficacy of the top hit, Erlotinib, extended to human cells, where it blocked Wnt/ß-catenin signaling downstream of the destruction complex. Notably, Erlotinib treatment reduced self-renewal in human T-cell Acute Lymphoblastic Leukemia cells, which rely on active ß-catenin signaling for maintenance of leukemia-initiating cells. Erlotinib also reduced leukemia-initiating cell frequency and delayed disease formation in zebrafish models. This study underscores zebrafish's translational potential in drug discovery and repurposing and highlights a new use for Erlotinib as a Wnt inhibitor for cancers driven by aberrant Wnt/ß-catenin signaling.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Vía de Señalización Wnt , Animales , Humanos , Clorhidrato de Erlotinib/farmacología , Clorhidrato de Erlotinib/uso terapéutico , Pez Cebra/metabolismo , beta Catenina/metabolismo , Evaluación Preclínica de Medicamentos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Linfocitos T/metabolismo
2.
STAR Protoc ; 2(2): 100433, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-33889852

RESUMEN

Dysregulation of Wnt signaling is a hallmark of many cancers, and the development of effective, non-toxic small-molecule Wnt inhibitors is desirable. Off-target toxicities of new compounds are typically tested in mouse models, which is both costly and time consuming. Here, we present a rapid and inexpensive protocol to determine the in vivo toxicity and efficacy of novel Wnt inhibitors in zebrafish using a combination of a fluorescence reporter assay as well as eye rescue and fin regeneration assays. These experiments are completed within 1 week to rapidly narrow drug candidates before moving to more expensive pre-clinical testing. For complete details on the use and execution of this protocol, please refer to Zhang et al. (2020).


Asunto(s)
Antineoplásicos , Evaluación Preclínica de Medicamentos/métodos , Proteínas Wnt/antagonistas & inhibidores , Vía de Señalización Wnt/efectos de los fármacos , Animales , Antineoplásicos/farmacología , Antineoplásicos/toxicidad , Femenino , Masculino , Neoplasias Experimentales/metabolismo , Proteínas Wnt/metabolismo , Pez Cebra
3.
J Vis Exp ; (158)2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32338651

RESUMEN

Patient derived xenograft models are critical in defining how different cancers respond to drug treatment in an in vivo system. Mouse models are the standard in the field, but zebrafish have emerged as an alternative model with several advantages, including the ability for high-throughput and low-cost drug screening. Zebrafish also allow for in vivo drug screening with large replicate numbers that were previously only obtainable with in vitro systems. The ability to rapidly perform large scale drug screens may open up the possibility for personalized medicine with rapid translation of results back to clinic. Zebrafish xenograft models could also be used to rapidly screen for actionable mutations based on tumor response to targeted therapies or to identify new anti-cancer compounds from large libraries. The current major limitation in the field has been quantifying and automating the process so that drug screens can be done on a larger scale and be less labor-intensive. We have developed a workflow for xenografting primary patient samples into zebrafish larvae and performing large scale drug screens using a fluorescence microscope equipped imaging unit and automated sampler unit. This method allows for standardization and quantification of engrafted tumor area and response to drug treatment across large numbers of zebrafish larvae. Overall, this method is advantageous over traditional cell culture drug screening as it allows for growth of tumor cells in an in vivo environment throughout drug treatment, and is more practical and cost-effective than mice for large scale in vivo drug screens.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Animales , Modelos Animales de Enfermedad , Humanos , Trasplante Heterólogo , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA