Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Tetrahedron Lett ; 732021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34672489

RESUMEN

Herbal medicine is used as a complement to modern medicine for the treatment of human diseases suchas cancer, inflammation, and diabetes. Nutraceutical components in foods such as vanillin produceantioxidant and anticancer activities and many of these produce minimal adverse effects in humans.Therefore, strategies that combine both herbal medicine and nutraceutical components could producecompounds that exhibit reduced toxicity. Recently, we developed GZ16.007, which is a combination ofharmaline and curcumin that is currently undergoing clinical evaluation for the treatment of cancer. Incontrast to the utilization of curcumin, we report herein the synthesis of a novel scaffold that utilizes har-maline and vanillin as nutraceutical components to form a newly identified anti-cancer scaffold. It wasdetermined that the inclusion of two molecules of harmaline and a single equivalent of vanillin produceda dimeric product that was active against various human cancer cell lines. The synthesis, evaluation andpreliminary SAR studies for the dimeric scaffold is discussed herein.

2.
ACS Chem Neurosci ; 12(16): 3049-3059, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34340312

RESUMEN

Diabetic peripheral neuropathy (DPN) is a complication of diabetes whose pathophysiology is linked to altered mitochondrial bioenergetics (mtBE). KU-596 is a small molecule neurotherapeutic that reverses symptoms of DPN, improves sensory neuron mtBE, and decreases the pro-oxidant protein, thioredoxin-interacting protein (Txnip) in a heat shock protein 70 (Hsp70)-dependent manner. However, the mechanism by which KU-596 improves mtBE and the role of Txnip in drug efficacy remains unknown. Mitophagy is a quality-control mechanism that selectively targets damaged mitochondria for degradation. The goal of this study was to determine if KU-596 therapy improved DPN, mtBE, and mitophagy in an Hsp70- and Txnip-dependent manner. Mito-QC (MQC) mice express a mitochondrially targeted mCherry-GFP fusion protein that enables visualizing mitophagy. Diabetic MQC, MQC × Hsp70 knockout (KO), and MQC × Txnip KO mice developed sensory and nerve conduction dysfunctions consistent with the onset of DPN. KU-596 therapy improved these measures, and this was dependent on Hsp70 but not Txnip. In MQC mice, diabetes decreased mtBE and increased mitophagy and KU-596 treatment reversed these effects. In contrast, KU-596 was unable to improve mtBE and decrease mitophagy in MQC × Hsp70 and MQC × Txnip KO mice. These data suggest that Txnip is not necessary for the development of the sensory symptoms and mitochondrial dysfunction induced by diabetes. KU-596 therapy may improve mitochondrial tolerance to diabetic stress to decrease mitophagic clearance in an Hsp70- and Txnip-dependent manner.


Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , Animales , Neuropatías Diabéticas/tratamiento farmacológico , Neuropatías Diabéticas/metabolismo , Metabolismo Energético , Proteínas HSP70 de Choque Térmico/metabolismo , Ratones , Mitocondrias/metabolismo , Mitofagia , Células Receptoras Sensoriales/metabolismo , Tiorredoxinas/metabolismo
3.
Exp Neurol ; 313: 88-97, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30557564

RESUMEN

Neuronal mitochondrial dysfunction and oxidative stress are key pathophysiologic mechanisms of diabetic peripheral neuropathy (DPN). KU-596 is a small molecule modulator of heat shock protein 90 (Hsp90) that can reverse clinically relevant measures of DPN in diabetic animal models. Mechanistically, drug efficacy requires Hsp70 and correlates with improving mitochondrial maximal respiratory capacity (MRC) and decreasing oxidative stress in diabetic sensory neurons. The goal of this study was to determine if ex vivo treatment of diabetic neurons with KU-596 improves MRC by decreasing glucose-induced oxidative stress in an Hsp70-dependent manner. Sensory neurons were isolated from non-diabetic or diabetic mice wild type (WT) or Hsp70 knockout (Hsp70 KO) mice and treated with KU-596 in the presence of low or high glucose concentrations. In diabetic WT and Hsp70 KO neurons, hyperglycemia significantly increased superoxide levels, but KU-596 only decreased superoxide in WT neurons. Similarly, KU-596 significantly improved MRC in diabetic WT neurons maintained in high glucose but did not improve MRC in diabetic Hsp70 KO neurons under the same conditions. Since manganese superoxide dismutase (MnSOD) is the main mechanism to detoxify mitochondrial superoxide radicals, the cause and effect relationship between improved respiration and decreased oxidative stress was examined after knocking down MnSOD. Downregulating MnSOD in diabetic WT neurons increased hyperglycemia-induced superoxide levels, which was still significantly decreased by KU-596. However, KU-596 did not improve MRC following MnSOD knockdown. These data suggest that the ability of KU-596 to improve MRC is not necessarily dependent on decreasing mitochondrial superoxide in a MnSOD-dependent manner.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Glicósidos/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fenetilaminas/farmacología , Células Receptoras Sensoriales/metabolismo , Superóxido Dismutasa/biosíntesis , Superóxidos/metabolismo , Animales , Neuropatías Diabéticas/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Femenino , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Hiperglucemia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Consumo de Oxígeno/efectos de los fármacos
4.
Nat Commun ; 9(1): 425, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29382832

RESUMEN

The 90 kDa heat shock protein (Hsp90) is a molecular chaperone responsible for folding proteins that are directly associated with cancer progression. Consequently, inhibition of the Hsp90 protein folding machinery results in a combinatorial attack on numerous oncogenic pathways. Seventeen small-molecule inhibitors of Hsp90 have entered clinical trials, all of which bind the Hsp90 N-terminus and exhibit pan-inhibitory activity against all four Hsp90 isoforms. pan-Inhibition of Hsp90 appears to be detrimental as toxicities have been reported alongside induction of the pro-survival heat shock response. The development of Hsp90 isoform-selective inhibitors represents an alternative approach towards the treatment of cancer that may limit some of the detriments. Described herein is a structure-based approach to design isoform-selective inhibitors of Hsp90ß, which induces the degradation of select Hsp90 clients without concomitant induction of Hsp90 levels. Together, these initial studies support the development of Hsp90ß-selective inhibitors as a method to overcome the detriments associated with pan-inhibition.


Asunto(s)
Antineoplásicos/química , Diseño de Fármacos , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Células HEK293 , Humanos , Enlace de Hidrógeno , Isoformas de Proteínas , Relación Estructura-Actividad
5.
ACS Chem Neurosci ; 6(9): 1637-48, 2015 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-26161583

RESUMEN

We have previously demonstrated that modulating molecular chaperones with KU-32, a novobiocin derivative, ameliorates physiologic and bioenergetic deficits of diabetic peripheral neuropathy (DPN). Replacing the coumarin core of KU-32 with a meta-fluorinated biphenyl ring system created KU-596, a novobiocin analogue (novologue) that showed neuroprotective activity in a cell-based assay. The current study sought to determine whether KU-596 offers similar therapeutic potential for treating DPN. Administration of 2-20 mg/kg of KU-596 improved diabetes induced hypoalgesia and sensory neuron bioenergetic deficits in a dose-dependent manner. However, the drug could not improve these neuropathic deficits in diabetic heat shock protein 70 knockout (Hsp70 KO) mice. To gain further insight into the mechanisms by which KU-596 improved DPN, we performed transcriptomic analysis of sensory neuron RNA obtained from diabetic wild-type and Hsp70 KO mice using RNA sequencing. Bioinformatic analysis of the differentially expressed genes indicated that diabetes strongly increased inflammatory pathways and that KU-596 therapy effectively reversed these increases independent of Hsp70. In contrast, the effects of KU-596 on decreasing the expression of genes regulating the production of reactive oxygen species were more Hsp70-dependent. These data indicate that modulation of molecular chaperones by novologue therapy offers an effective approach toward correcting nerve dysfunction in DPN but that normalization of inflammatory pathways alone by novologue therapy seems to be insufficient to reverse sensory deficits associated with insensate DPN.


Asunto(s)
Neuropatías Diabéticas/tratamiento farmacológico , Glicósidos/farmacología , Mitocondrias/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fenetilaminas/farmacología , Células Receptoras Sensoriales/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Neuropatías Diabéticas/metabolismo , Relación Dosis-Respuesta a Droga , Metabolismo Energético/efectos de los fármacos , Femenino , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Vértebras Lumbares , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Dolor/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células Receptoras Sensoriales/metabolismo
6.
Future Med Chem ; 6(14): 1587-605, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25367392

RESUMEN

Hsp90 is responsible for the conformational maturation of newly synthesized polypeptides (client proteins) and the re-maturation of denatured proteins via the Hsp90 chaperone cycle. Inhibition of the Hsp90 N-terminus has emerged as a clinically relevant strategy for anticancer chemotherapeutics due to the involvement of clients in a variety of oncogenic pathways. Several immunophilins, co-chaperones and partner proteins are also necessary for Hsp90 chaperoning activity. Alternative strategies to inhibit Hsp90 function include disruption of the C-terminal dimerization domain and the Hsp90 heteroprotein complex. C-terminal inhibitors and Hsp90 co-chaperone disruptors prevent cancer cell proliferation similar to N-terminal inhibitors and destabilize client proteins without induction of heat shock proteins. Herein, current Hsp90 inhibitors, the chaperone cycle, and regulation of this cycle will be discussed.


Asunto(s)
Descubrimiento de Drogas , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/metabolismo , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Catequina/análogos & derivados , Catequina/química , Catequina/farmacología , Proteínas HSP90 de Choque Térmico/química , Humanos , Modelos Moleculares , Neoplasias/metabolismo , Novobiocina/análogos & derivados , Novobiocina/farmacología , Silibina , Silimarina/química , Silimarina/farmacología
7.
J Pharmacol Exp Ther ; 348(2): 281-92, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24263156

RESUMEN

Impaired neuronal mitochondrial bioenergetics contributes to the pathophysiologic progression of diabetic peripheral neuropathy (DPN) and may be a focal point for disease management. We have demonstrated that modulating heat shock protein (Hsp) 90 and Hsp70 with the small-molecule drug KU-32 ameliorates psychosensory, electrophysiologic, morphologic, and bioenergetic deficits of DPN in animal models of type 1 diabetes. The current study used mouse models of type 1 and type 2 diabetes to determine the relationship of changes in sensory neuron mitochondrial bioenergetics to the onset of and recovery from DPN. The onset of DPN showed a tight temporal correlation with a decrease in mitochondrial bioenergetics in a genetic model of type 2 diabetes. In contrast, sensory hypoalgesia developed 10 weeks before the occurrence of significant declines in sensory neuron mitochondrial bioenergetics in the type 1 model. KU-32 therapy improved mitochondrial bioenergetics in both the type 1 and type 2 models, and this tightly correlated with a decrease in DPN. Mechanistically, improved mitochondrial function following KU-32 therapy required Hsp70, since the drug was ineffective in diabetic Hsp70 knockout mice. Our data indicate that changes in mitochondrial bioenergetics may rapidly contribute to nerve dysfunction in type 2 diabetes, but not type 1 diabetes, and that modulating Hsp70 offers an effective approach toward correcting sensory neuron bioenergetic deficits and DPN in both type 1 and type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Neuropatías Diabéticas/prevención & control , Proteínas HSP70 de Choque Térmico/metabolismo , Hipoglucemiantes/uso terapéutico , Mitocondrias/efectos de los fármacos , Novobiocina/análogos & derivados , Fosforilación Oxidativa/efectos de los fármacos , Animales , Células Cultivadas , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Relación Dosis-Respuesta a Droga , Femenino , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Proteínas HSP70 de Choque Térmico/genética , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/sangre , Hipoglucemiantes/farmacocinética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mitocondrias/enzimología , Mitocondrias/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Neuritis/prevención & control , Neuronas/efectos de los fármacos , Neuronas/enzimología , Neuronas/metabolismo , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/sangre , Fármacos Neuroprotectores/farmacocinética , Fármacos Neuroprotectores/uso terapéutico , Novobiocina/administración & dosificación , Novobiocina/sangre , Novobiocina/farmacocinética , Novobiocina/uso terapéutico , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo
8.
J Proteome Res ; 11(4): 2581-93, 2012 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-22413817

RESUMEN

Diabetic peripheral neuropathy (DPN) is a common complication of diabetes in which hyperglycemia-induced mitochondrial dysfunction and enhanced oxidative stress contribute to sensory neuron pathology. KU-32 is a novobiocin-based, C-terminal inhibitor of the molecular chaperone, heat shock protein 90 (Hsp90). KU-32 ameliorates multiple sensory deficits associated with the progression of DPN and protects unmyelinated sensory neurons from glucose-induced toxicity. Mechanistically, KU-32 increased the expression of Hsp70, and this protein was critical for drug efficacy in reversing DPN. However, it remained unclear if KU-32 had a broader effect on chaperone induction and if its efficacy was linked to improving mitochondrial dysfunction. Using cultures of hyperglycemically stressed primary sensory neurons, the present study investigated whether KU-32 had an effect on the translational induction of other chaperones and improved mitochondrial oxidative stress and bioenergetics. A variation of stable isotope labeling with amino acids in cell culture called pulse SILAC (pSILAC) was used to unbiasedly assess changes in protein translation. Hyperglycemia decreased the translation of numerous mitochondrial proteins that affect superoxide levels and respiratory activity. Importantly, this correlated with a decrease in mitochondrial oxygen consumption and an increase in superoxide levels. KU-32 increased the translation of Mn superoxide dismutase and several cytosolic and mitochondrial chaperones. Consistent with these changes, KU-32 decreased mitochondrial superoxide levels and significantly enhanced respiratory activity. These data indicate that efficacy of modulating molecular chaperones in DPN may be due in part to improved neuronal mitochondrial bioenergetics and decreased oxidative stress.


Asunto(s)
Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Hiperglucemia/metabolismo , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Células Receptoras Sensoriales/efectos de los fármacos , Secuencia de Aminoácidos , Análisis de Varianza , Animales , Células Cultivadas , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Marcaje Isotópico , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Novobiocina/análogos & derivados , Novobiocina/farmacología , Ratas , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/metabolismo , Superóxido Dismutasa/metabolismo
9.
J Org Chem ; 69(13): 4375-80, 2004 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-15202892

RESUMEN

Inhibition of the 90 kDa heat shock proteins (Hsp90) represents a promising new chemotherapeutic approach for the treatment of several cancers. Hsp90 is essential to the survival of cancer cells and is inhibited by members of the ansamycin family of antibiotics. In particular, the quinone-containing antibiotics geldanamycin (GDA) and herbimycin A inhibit Hsp90 function in vitro at low micromolar concentrations via interaction with an ATP binding domain. Many proteins bind ATP, and the discovery of selective Hsp90 inhibitors requires the identification of other proteins that bind GDA and may cause undesired effects. Biotinylated analogues of GDA with varying tether lengths have been synthesized to elucidate other proteins that competitively bind GDA. Analogues containing a photolabile tether have also been prepared as a complementary method for the removal of GDA-bound proteins from neutravidin-containing resin. Preliminary studies indicate several proteins other than Hsp90 are isolated with biotinylated GDA.


Asunto(s)
Quinonas/síntesis química , Adenosina Trifosfato/metabolismo , Benzoquinonas , Biotinilación , Proteínas HSP90 de Choque Térmico/aislamiento & purificación , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Lactamas Macrocíclicas , Fotoquímica , Unión Proteica , Quinonas/química , Quinonas/metabolismo , Quinonas/farmacología , Rifabutina/análogos & derivados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA