Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Process Impacts ; 23(1): 73-85, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33325952

RESUMEN

We investigated the mechanisms of uranium (U) uptake by Tamarix (salt cedars) growing along the Rio Paguate, which flows throughout the Jackpile mine near Pueblo de Laguna, New Mexico. Tamarix were selected for this study due to the detection of U in the roots and shoots of field collected plants (0.6-58.9 mg kg-1), presenting an average bioconcentration factor greater than 1. Synchrotron-based micro X-ray fluorescence analyses of plant roots collected from the field indicate that the accumulation of U occurs in the cortex of the root. The mechanisms for U accumulation in the roots of Tamarix were further investigated in controlled-laboratory experiments where living roots of field plants were macerated for 24 h or 2 weeks in a solution containing 100 µM U. The U concentration in the solution decreased 36-59% after 24 h, and 49-65% in two weeks. Microscopic and spectroscopic analyses detected U precipitation in the root cell walls near the xylems of the roots, confirming the initial results from the field samples. High-resolution TEM was used to study the U fate inside the root cells, and needle-like U-P nanocrystals, with diameter <7 nm, were found entrapped inside vacuoles in cells. EXAFS shell-by-shell fitting suggest that U is associated with carbon functional groups. The preferable binding of U to the root cell walls may explain the U retention in the roots of Tamarix, followed by U-P crystal precipitation, and pinocytotic active transport and cellular entrapment. This process resulted in a limited translocation of U to the shoots in Tamarix plants. This study contributes to better understanding of the physicochemical mechanisms affecting the U uptake and accumulation by plants growing near contaminated sites.


Asunto(s)
Nanopartículas , Tamaricaceae , Uranio , New Mexico , Fósforo , Raíces de Plantas/química , Uranio/análisis
2.
Environ Sci Technol ; 52(22): 13089-13098, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30412391

RESUMEN

We integrated field measurements, hydroponic experiments, microscopy, and spectroscopy to investigate the effect of Ca(II) on dissolved U(VI) uptake by plants in 1 mM HCO3- solutions at circumneutral pH. The accumulation of U in plants (3.1-21.3 mg kg-1) from the stream bank of the Rio Paguate, Jackpile Mine, New Mexico served as a motivation for this study. Brassica juncea was the model plant used for the laboratory experiments conducted over a range of U (30-700 µg L-1) and Ca (0-240 mg L-1) concentrations. The initial U uptake followed pseudo-second-order kinetics. The initial U uptake rate ( V0) ranged from 4.4 to 62 µg g-1 h-1 in experiments with no added Ca and from 0.73 to 2.07 µg g-1 h-1 in experiments with 12 mg L-1 Ca. No measurable U uptake over time was detected for experiments with 240 mg L-1 Ca. Ternary Ca-U-CO3 complexes may affect the decrease in U bioavailability observed in this study. Elemental X-ray mapping using scanning transmission electron microscopy-energy-dispersive spectrometry detected U-P-bearing precipitates within root cell walls in water free of Ca. These results suggest that root interactions with Ca and carbonate in solution affect the bioavailability of U in plants. This study contributes relevant information to applications related to U transport and remediation of contaminated sites.


Asunto(s)
Uranio , Disponibilidad Biológica , Calcio , Concentración de Iones de Hidrógeno , New Mexico , Raíces de Plantas
3.
Environ Sci Technol ; 51(21): 12385-12393, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-29017012

RESUMEN

The reactive transport of uranium (U) and vanadium(V) from abandoned mine wastes collected from the Blue Gap/Tachee Claim-28 mine site in Arizona was investigated by integrating flow-through column experiments with reactive transport modeling, and electron microscopy. The mine wastes were sequentially reacted in flow-through columns at pH 7.9 (10 mM HCO3-) and pH 3.4 (10 mM CH3COOH) to evaluate the effect of environmentally relevant conditions encountered at Blue Gap/Tachee on the release of U and V. The reaction rate constants (km) for the dissolution of uranyl-vanadate (U-V) minerals predominant at Blue Gap/Tachee were obtained from simulations with the reactive transport software, PFLOTRAN. The estimated reaction rate constants were within 1 order of magnitude for pH 7.9 (km = 4.8 × 10-13 mol cm-2 s-1) and pH 3.4 (km = 3.2 × 10-13 mol cm-2 s-1). However, the estimated equilibrium constants (Keq) for U-V bearing minerals were more than 6 orders of magnitude different for reaction at circumneutral pH (Keq = 10-38.65) compared to acidic pH (Keq = 10-44.81). These results coupled with electron microscopy data suggest that the release of U and V is affected by water pH and the crystalline structure of U-V bearing minerals. The findings from this investigation have important implications for risk exposure assessment, remediation, and resource recovery of U and V in locations where U-V-bearing minerals are abundant.


Asunto(s)
Minería , Uranio , Arizona , Minerales , Vanadio , Eliminación de Residuos Líquidos
4.
Environ Sci Process Impacts ; 19(4): 605-621, 2017 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-28352908

RESUMEN

The mobility and accumulation of uranium (U) along the Rio Paguate, adjacent to the Jackpile Mine, in Laguna Pueblo, New Mexico was investigated using aqueous chemistry, electron microprobe, X-ray diffraction and spectroscopy analyses. Given that it is not common to identify elevated concentrations of U in surface water sources, the Rio Paguate is a unique site that concerns the Laguna Pueblo community. This study aims to better understand the solid chemistry of abandoned mine waste sediments from the Jackpile Mine and identify key hydrogeological and geochemical processes that affect the fate of U along the Rio Paguate. Solid analyses using X-ray fluorescence determined that sediments located in the Jackpile Mine contain ranges of 320 to 9200 mg kg-1 U. The presence of coffinite, a U(iv)-bearing mineral, was identified by X-ray diffraction analyses in abandoned mine waste solids exposed to several decades of weathering and oxidation. The dissolution of these U-bearing minerals from abandoned mine wastes could contribute to U mobility during rain events. The U concentration in surface waters sampled closest to mine wastes are highest during the southwestern monsoon season. Samples collected from September 2014 to August 2016 showed higher U concentrations in surface water adjacent to the Jackpile Mine (35.3 to 772 µg L-1) compared with those at a wetland 4.5 kilometers downstream of the mine (5.77 to 110 µg L-1). Sediments co-located in the stream bed and bank along the reach between the mine and wetland had low U concentrations (range 1-5 mg kg-1) compared to concentrations in wetland sediments with higher organic matter (14-15%) and U concentrations (2-21 mg kg-1). Approximately 10% of the total U in wetland sediments was amenable to complexation with 1 mM sodium bicarbonate in batch experiments; a decrease of U concentration in solution was observed over time in these experiments likely due to re-association with sediments in the reactor. The findings from this study provide new insights about how hydrologic events may affect the reactivity of U present in mine waste solids exposed to surface oxidizing conditions, and the influence of organic-rich sediments on U accumulation in the Rio Paguate.


Asunto(s)
Sedimentos Geológicos/análisis , Sedimentos Geológicos/química , Residuos Industriales/análisis , Minería , Uranio/análisis , Humedales , Monitoreo del Ambiente , New Mexico , Uranio/química , Difracción de Rayos X
5.
Environ Sci Technol ; 49(14): 8506-14, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26158204

RESUMEN

The chemical interactions of U and co-occurring metals in abandoned mine wastes in a Native American community in northeastern Arizona were investigated using spectroscopy, microscopy and aqueous chemistry. The concentrations of U (67-169 µg L(-1)) in spring water samples exceed the EPA maximum contaminant limit of 30 µg L(-1). Elevated U (6,614 mg kg(-1)), V (15,814 mg kg(-1)), and As (40 mg kg(-1)) concentrations were detected in mine waste solids. Spectroscopy (XPS and XANES) solid analyses identified U (VI), As (-I and III) and Fe (II, III). Linear correlations for the release of U vs V and As vs Fe were observed for batch experiments when reacting mine waste solids with 10 mM ascorbic acid (∼pH 3.8) after 264 h. The release of U, V, As, and Fe was at least 4-fold lower after reaction with 10 mM bicarbonate (∼pH 8.3). These results suggest that U-V mineral phases similar to carnotite [K2(UO2)2V2O8] and As-Fe-bearing phases control the availability of U and As in these abandoned mine wastes. Elevated concentrations of metals are of concern due to human exposure pathways and exposure of livestock currently ingesting water in the area. This study contributes to understanding the occurrence and mobility of metals in communities located close to abandoned mine waste sites.


Asunto(s)
Residuos Industriales/análisis , Metales/análisis , Minería , Uranio/análisis , Arizona , Ácido Ascórbico/química , Monitoreo del Ambiente/métodos , Humanos , Indígenas Norteamericanos , Hierro/análisis , Espectroscopía de Fotoelectrones , Residuos Sólidos , Uranio/química , Vanadio/análisis , Vanadio/química , Espectroscopía de Absorción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA