Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Physiol Heart Circ Physiol ; 295(2): H851-9, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18567703

RESUMEN

Ginseng botanicals are increasingly used as complementary or alternative medicines for a variety of cardiovascular diseases, yet little is known about their cellular actions in cardiac muscle. Electromechanical alternans (EMA) is a proarrhythmic cardiac abnormality that results from disturbances of intracellular Ca(2+) homeostasis. This study sought to determine whether a purified ginsenoside extract of ginseng, Re, exerts effects to suppress EMA and to gain insight into its mechanism of action. Alternans was induced by electrically pacing cardiomyocytes at room temperature. Re (> or = 10 nM) reversibly suppressed EMA recorded from cat ventricular and atrial myocytes and Langendorff-perfused cat hearts. In cat ventricular myocytes, Re reversibly suppressed intracellular Ca(2+) concentration ([Ca(2+)](i)) transient alternans. Re exerted no significant effects on baseline action potential configuration or sarcolemmal L-type Ca(2+) current (I(Ca,L)), Na(+) current, or total K(+) conductance. In human atrial myocytes, Re suppressed mechanical alternans and exerted no effect on I(Ca,L). In cat ventricular myocytes, Re increased [Ca(2+)](i) transient amplitude and decreased sarcoplasmic reticulum (SR) Ca(2+) content, resulting in an increase in fractional SR Ca(2+) release. In SR microsomes isolated from cat ventricles, Re had no effect on SR Ca(2+) uptake. Re increased the open probability of ryanodine receptors (RyRs), i.e., SR Ca(2+)-release channels, isolated from cat ventricles and incorporated into planar lipid bilayers. We concluded that ginsenoside Re suppresses EMA in cat atrial and ventricular myocytes, cat ventricular muscle, and human atrial myocytes. The effects of Re are not mediated via actions on sarcolemmal ion channels or action potential configuration. Re acts via a subcellular mechanism to enhance the opening of RyRs and thereby overcome the impaired SR Ca(2+) release underlying EMA.


Asunto(s)
Antiarrítmicos/farmacología , Señalización del Calcio/efectos de los fármacos , Ginsenósidos/farmacología , Miocitos Cardíacos/efectos de los fármacos , Potenciales de Acción , Animales , Canales de Calcio Tipo L/metabolismo , Estimulación Cardíaca Artificial , Gatos , Relación Dosis-Respuesta a Droga , Atrios Cardíacos/metabolismo , Ventrículos Cardíacos/metabolismo , Humanos , Técnicas In Vitro , Miocitos Cardíacos/metabolismo , Potasio/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/efectos de los fármacos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Sodio/metabolismo , Factores de Tiempo
2.
Cell Calcium ; 38(5): 497-505, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16122794

RESUMEN

The Ca2+ concentration inside the sarcoplasmic reticulum ([Ca2+]SR) is a difficult parameter to measure in ventricular cardiac myocytes. Interference from Ca2+-sensitive dye loading into cellular compartments other than the SR interferes with free Ca2+ measurement. In addition, the composition of the cytosol surrounding the SR in intact cells cannot be easily controlled. We have developed a method to measure localized [Ca2+]SR in immobilized membrane vesicles during rapid solution switches. Ca2+ uptake and release in rat SR membrane vesicles was monitored using confocal microscopy. Vesicles were immobilized on a coverslip using an agarose matrix. Perfusion with a Ca2+-containing solution supplemented with ATP initiated SR Ca2+ uptake, causing a rise in intravesicular fluorescence in vesicles containing the low-affinity Ca2+ indicator fluo-5N. Perfusion with caffeine caused SR Ca2+ release and a decrease in intravesicular flourescence. Although caffeine-dependent release was readily visible with extravesicular Ca2+-green, Ca2+ which leaked from the SR was detected only indirectly as eventless release. We conclude that SR Ca2+ uptake and release can be selectively measured in functional SR vesicles using a confocal microscope. Caffeine-dependent release is directly measurable though SR Ca2+ leak can only be inferred as subresolution events, presumably because channels in separate vesicles were not close enough to result in concerted Ca2+-induced Ca2+ release.


Asunto(s)
Calcio/metabolismo , Retículo Sarcoplasmático/fisiología , Animales , Cafeína/farmacología , Calcio/farmacología , Microscopía Confocal , Músculo Esquelético/ultraestructura , Miocitos Cardíacos/ultraestructura , Conejos , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA