Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38035764

RESUMEN

Three trials were undertaken to provide an answer to different questions: 1) Are suckling pigs able to maintain physiological serum Zn levels throughout lactation and do these levels vary between high and low body weight (BW) pigs?, 2) Are serum Zn levels in pigs soon after weaning a predisposing factor for diarrhea?, and 3) Is it possible to increase serum Zn levels at weaning by supplementing Zn during lactation. In trial 1, blood samples were taken from pigs during lactation. Eight pigs (one piglet per litter) had blood drawn on days 0 (farrowing), 7, 14, 21, and 28 (weaning), and 60 pigs (selected from the whole farrowing batch with 35 sows), categorized as either heavy (8.63 kg) or light (5.50 kg) had blood drawn on day 28. Serum Zn levels at birth were 1.2 mg/L and decreased (P < 0.01) to 0.67 mg/L on day 28. Heavier pigs showed greater (P < 0.01) serum Zn levels (0.98 mg/L) than light BW pigs (0.79 mg/L). In trial 2, blood samples were obtained from 240 pigs at weaning (26.2 ±â€…2.5 d) with an average initial BW of 6.94 ±â€…1.87 kg and were distributed into 24 pens (10 pigs/pen) by BW. Diarrhea incidence was recorded daily from days 0 to 35 post-weaning. From the 240 pigs, a group of 110 pigs with uniform BW (6.5 ±â€…1.9 kg) was selected and separated into two groups based on serum Zn levels at weaning with 55 pigs with low serum Zn (LZn: <0.71 mg/L) and 55 pigs with high serum Zn (HZn: >0.9 mg/L). Pigs with LZn were 2.49 times as likely to have diarrhea as pigs with HZn (P < 0.02). In trial 3, a total of 96 suckling pigs were allotted four treatments that consisted of the daily administration of 0, 6, 18, or 30 mg of Zn as Zn citrate in capsule form during the last 7 d of lactation. Pigs were individually weighed, and blood samples were obtained on days 14, 21 (weaning), and 7 after weaning. Serum Zn levels linearly increased by day as Zn citrate supplementation increased (interaction, P < 0.001). However, only light pigs supplemented with 18 and 30 mg/L of Zn experienced an increase in serum Zn levels during lactation. In conclusion, a decrease in serum Zn levels occurs during lactation and is more severe in low BW pigs. Low Zn status (< 0.7 mg/L) at weaning may be a predisposing factor for diarrhea. However, Zn supplementation during lactation can mitigate this decrease in light pigs.


At weaning, young pigs may experience a decrease in serum Zn levels which can predispose them to diarrhea, particularly when fed diets with nutritional Zn levels. For several decades, this gap has been covered by using therapeutic levels of Zn. However, due to the negative collateral effects of these supra doses, from June 2022 in the EU the maximum level of Zn allowed in piglet diets is 150 mg/kg. In this scenario, it is imperative to investigate the Zn status evolution in pigs even before weaning, to anticipate the appearance of Zn deficiencies. This study had three main objectives: to investigate the Zn serum levels of light and heavy body weight pigs during lactation, to study these Zn levels as a predisposing factor to developing diarrhea during weaning and to study the effects of extra Zn supplementation during lactation to prevent Zn deficiency while weaning. Overall, the results indicate a decrease in pig serum Zn levels during lactation which is more severe in low body weight pigs. Low Zn status at weaning may be a predisposing factor for diarrhea. Nevertheless, external pig supplementation with Zn during lactation can mitigate this issue.


Asunto(s)
Desnutrición , Enfermedades de los Porcinos , Animales , Porcinos , Femenino , Suplementos Dietéticos , Lactancia/fisiología , Minerales , Desnutrición/veterinaria , Zinc , Diarrea/veterinaria , Citratos , Dieta/veterinaria , Alimentación Animal/análisis
2.
Sci Total Environ ; 857(Pt 3): 159609, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36273560

RESUMEN

Restrictions on antibiotic growth promoters have prompted livestock producers to use alternative growth promoters, and dietary copper (Cu) supplementation is currently being widely used in pig production. However, elevated doses of dietary Cu constitute a risk for co-selection of antibiotic resistance and the risk may depend on the type of Cu-based feed additives being used. We here report the first controlled experiment investigating the impact of two contrasting Cu-based feed additives on the overall swine gut microbiome and antibiotic resistome. DNA was extracted from fecal samples (n = 96) collected at four time points during 116 days from 120 pigs allotted to three dietary treatments: control, divalent copper sulfate (CuSO4; 250 µg Cu g-1 feed), and monovalent copper oxide (Cu2O; 250 µg Cu g-1 feed). Bacterial community composition, antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs) were assessed, and bioavailable Cu ([Cu]bio) was determined using whole-cell bacterial bioreporters. Cu supplementation to feed increased total Cu concentrations ([Cu]total) and [Cu]bio in feces 8-10 fold and at least 670-1000 fold, respectively, but with no significant differences between the two Cu sources. The swine gut microbiome harbored highly abundant and diverse ARGs and MGEs irrespective of the treatments throughout the experiment. Microbiomes differed significantly between pig growth stages and tended to converge over time, but only minor changes in the bacterial community composition and resistome could be linked to Cu supplementation. A significant correlation between bacterial community composition (i.e., bacterial taxa present) and ARG prevalence patterns were observed by Procrustes analysis. Overall, results of the experiment did not provide evidence for Cu-induced co-selection of ARGs or MGEs even at a Cu concentration level exceeding the maximal permitted level for pig diets in the EU (25 to 150 µg Cu g-1 feed depending on pig age).


Asunto(s)
Microbioma Gastrointestinal , Porcinos , Animales , Antibacterianos/farmacología , Cobre , Farmacorresistencia Microbiana/genética , Heces , Bacterias/genética , Genes Bacterianos
3.
J Anim Sci ; 100(9)2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35723874

RESUMEN

The beneficial effect of elevated concentrations of copper (Cu) on growth performance of pigs has been already demonstrated; however, their mechanism of action is not fully discovered. The objective of the present experiment was to investigate the effects of including Cu from copper sulfate (CuSO4) or monovalent copper oxide (Cu2O) in the diet of growing pigs on oxidative stress, inflammation, gene abundance, and microbial modulation. We used 120 pigs with initial body weight (BW) of 11.5 ± 0.98 kg in 2 blocks of 60 pigs, 3 dietary treatments, 5 pigs per pen, and 4 replicate pens per treatment within each block for a total of 8 pens per treatment. Dietary treatments included the negative control (NC) diet containing 20 mg Cu/kg and 2 diets in which 250 mg Cu/kg from CuSO4 or Cu2O was added to the NC. On day 28, serum samples were collected from one pig per pen and this pig was then euthanized to obtain liver samples for the analysis of oxidative stress markers (Cu/Zn superoxide dismutase, glutathione peroxidase, and malondialdehyde, MDA). Serum samples were analyzed for cytokines. Jejunum tissue and colon content were collected and used for transcriptomic analyses and microbial characterization, respectively. Results indicated that there were greater (P < 0.05) MDA levels in the liver of pigs fed the diet with 250 mg/kg CuSO4 than in pigs fed the other diets. The serum concentration of tumor necrosis factor-alpha was greater (P < 0.05) in pigs fed diets containing CuSO4 compared with pigs fed the NC diet or the diet with 250 mg Cu/kg from Cu2O. Pigs fed diets containing CuSO4 or Cu2O had a greater (P < 0.05) abundance of genes related to the intestinal barrier function and nutrient transport, but a lower (P < 0.05) abundance of pro-inflammatory genes compared with pigs fed the NC diet. Supplementing diets with CuSO4 or Cu2O also increased (P < 0.05) the abundance of Lachnospiraceae and Peptostreptococcaceae families and reduced (P < 0.05) the abundance of the Rikenellaceae family, Campylobacter, and Streptococcus genera in the colon of pigs. In conclusion, adding 250 mg/kg of Cu from CuSO4 or Cu2O regulates genes abundance in charge of the immune system and growth, and promotes changes in the intestinal microbiota; however, Cu2O induces less systemic oxidation and inflammation compared with CuSO4.


Copper is a nonrenewable mineral resource that is essential for all biological organisms. After banning the antibiotics, copper has received considerable attention due to its antimicrobial properties that improve performance in animals when fed over the minimum requirement. The present study evaluated two sources of Cu (copper sulfate and monovalent copper oxide) compared with a nonsupplemented diet and the likely mechanism of action which leads to improved pig performance. Pigs fed high concentrations of copper sulfate showed increased liver oxidation and inflammatory indicators in the blood. Elevated concentrations of Cu improved intestinal epithelial barrier function, modulation of inflammatory responses, increased beneficial microbes, and reduced pathogens in the gut. Therefore, supplementation of high levels of Cu appears to be effective in promoting pig growth, but therapeutic doses of Cu sulfate increase the inflammatory response.


Asunto(s)
Cobre , Enfermedades de los Porcinos , Animales , Cobre/farmacología , Sulfato de Cobre/farmacología , Glutatión Peroxidasa , Inflamación/veterinaria , Malondialdehído , Estrés Oxidativo , Óxidos/farmacología , Superóxido Dismutasa , Porcinos , Factor de Necrosis Tumoral alfa
4.
J Anim Sci ; 99(6)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33880556

RESUMEN

An experiment was conducted to test the hypothesis that inclusion of Cu oxide (Cu2O) in diets for growing-finishing pigs improves body weight (BW) and bone mineralization, and reduces accumulation of Cu in the liver compared with pigs fed diets containing Cu sulfate (CuSO4). Two hundred growing pigs (initial BW: 11.5 ± 0.98 kg) were allotted to a randomized complete block design with 2 blocks of 100 pigs, 5 dietary treatments, 5 pigs per pen, and a total of 8 pens per treatment. Treatments included the negative control (NC) diet that contained 20 mg Cu/kg, and 4 diets in which 125 or 250 mg Cu/kg from CuSO4 or Cu2O were added to the NC diet. The experiment was divided into 4 phases and concluded when pigs reached market weight. Pig weights were recorded on day 1 and at the end of each phase and feed provisions were recorded throughout the experiment. On the last day of phases 1 and 4, 1 pig per pen was sacrificed to obtain samples of liver and spleen tissue, and the right metacarpal was collected. Results indicated that pigs fed diets containing 250 mg Cu/kg from CuSO4 had greater BW at the end of phases 1 and 2 than pigs fed NC diets. Pigs fed diets containing 250 mg Cu/kg from Cu2O had greater (P < 0.05) BW at the end of phases 1, 2, 3, and 4 compared with pigs fed NC diets, and these pigs also had greater BW at the end of phases 3 and 4 than pigs fed all other diets. Pigs fed the diets with 250 mg Cu/kg tended to have greater (P < 0.10) feed intake than pigs fed the NC diet at the end of phase 2, and for the overall experimental period, pigs fed diets containing 250 mg Cu/kg from Cu2O had greater (P < 0.05) feed intake than pigs on all other treatments. However, no differences in gain:feed ratio were observed among treatments. Copper accumulation in liver and spleen increased with Cu dose, but at the end of phase 1, pigs fed 250 mg Cu/kg from CuSO4 had greater (P < 0.05) Cu concentration in liver and spleen than pigs fed 250 mg Cu/kg from Cu2O. Pigs fed diets containing 250 mg Cu/kg from Cu2O had greater (P < 0.05) quantities of bone ash and greater (P < 0.05) concentrations of Ca, P, and Cu in bone ash than pigs fed NC diets or the 2 diets containing CuSO4, but Zn concentration in bone ash was less (P < 0.05) in pigs fed diets containing 250 mg Cu/kg from Cu2O. To conclude, supplementing diets for growing pigs with Cu2O improves growth performance and bone mineralization with less Cu accumulation in liver compared with pigs fed diets containing CuSO4.


Asunto(s)
Sulfato de Cobre , Cobre , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Peso Corporal , Calcificación Fisiológica , Dieta/veterinaria , Hígado , Óxidos , Distribución Aleatoria , Porcinos
5.
Animals (Basel) ; 11(2)2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33503942

RESUMEN

The performance of piglets in nurseries may vary depending on body weight, age at weaning, management, and pathogenic load in the pig facilities. The early events in a pig's life are very important and may have long lasting consequences, since growth lag involves a significant cost to the system due to reduced market weights and increased barn occupancy. The present review evidences that there are several strategies that can be used to improve the performance and welfare of pigs at weaning. A complex set of early management and dietary strategies have been explored in sows and suckling piglets for achieving optimum and efficient growth of piglets after weaning. The management strategies studied to improve development and animal welfare include: (1) improving sow housing during gestation, (2) reducing pain during farrowing, (3) facilitating an early and sufficient colostrum intake, (4) promoting an early social interaction between litters, and (5) providing complementary feed during lactation. Dietary strategies for sows and suckling piglets aim to: (1) enhance fetal growth (arginine, folate, betaine, vitamin B12, carnitine, chromium, and zinc), (2) increase colostrum and milk production (DL-methionine, DL-2-hydroxy-4-methylthiobutanoic acid, arginine, L-carnitine, tryptophan, valine, vitamin E, and phytogenic actives), (3) modulate sows' oxidative and inflammation status (polyunsaturated fatty acids, vitamin E, selenium, phytogenic actives, and spray dried plasma), (4) allow early microbial colonization (probiotics), or (5) supply conditionally essential nutrients (nucleotides, glutamate, glutamine, threonine, and tryptophan).

6.
Transl Anim Sci ; 4(4): txaa201, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33354657

RESUMEN

Two studies were conducted to determine the effects of a novel Escherichia coli phytase expressed in Pseudomonas fluorescens on growth performance, bone mineralization, and nutrient digestibility in pigs fed corn-soybean meal diets. In experiment 1, 160 nursery pigs (9.79 ± 1.22 kg) were randomly allotted to one of four treatments with 10 pens per treatment and four pigs per pen. Phase I and phase II diets were provided from d 0 to d 14 and d 14 to d 28, respectively. Treatments included: positive control (PC) with all nutrients meeting requirements; negative control (NC) with standardized total tract digestible (STTD) P reduced by 0.15% and 0.14% compared with PC in phase I and phase II, respectively; and NC diets containing 250 or 500 units of phytase (FTU) per kilogram. Results demonstrated that pigs fed PC had greater (P < 0.01) ADG and G:F for the overall experimental period, and greater (P < 0.01) bone ash and P concentrations, compared with pigs fed NC or diets with phytase supplementation. Pigs fed diets containing phytase had greater (P < 0.01) ADG and G:F for the overall experimental period compared with pigs fed the NC diet without phytase, and bone ash and P weights were increased (P < 0.01) as well. In experiment 2, 63 growing barrows (56.25 ± 2.54 kg) were blocked by BW and randomly allotted to one of seven treatments with nine pens per treatment and one pig per pen. A basal corn-soybean meal diet was formulated to meet nutrient requirements for growing pigs with the exception that STTD P was reduced by 0.18% compared with the requirement, and Ca was included to achieve a Ca:STTD P ratio of 2.15. Six additional diets were formulated by adding 250, 500, 750, 1,000, 1,500, or 2,000 FTU/kg of phytase to the basal diet. Pigs were fed experimental diets for 12 d with 7 d of adaptation and 5 d of fecal sample collection. Results indicated that there was a linear (P < 0.01) increase in apparent total tract digestibility of ash and ether extract, and STTD of Ca and P also increased (linear, P < 0.05) in response to increasing doses of phytase. Increasing phytase levels in the diets resulted in increase (quadratic, P < 0.05) in apparent ileal digestibility of Arg, His, Ile, Lys, Trp, Asp, and Glu. In conclusion, the novel E. coli phytase was effective in increasing growth performance, bone mineralization, and Ca and P digestibility in pigs fed corn-soybean meal-based diets. Results also indicated that this phytase had the potential to enhance the digestibility of fat and certain AA.

7.
J Anim Sci ; 97(8): 3390-3398, 2019 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-31162527

RESUMEN

Two experiments were conducted to test the hypothesis that a corn-expressed phytase increases growth performance, bone measurements, and nutrient digestibility by young growing pigs, if added to diets that are deficient in Ca and P. In Exp. 1, 60 pigs (initial BW: 10.78 ± 0.67 kg) were randomly allotted to 6 dietary treatments that included a positive control diet (PC; 0.70% total Ca and 0.60% total P) and a negative control diet (NC; 0.50% total Ca and 0.42% total P). Four additional diets were formulated by supplementing the NC diet with 250, 500, 1,000, or 1,500 phytase units (FTU)/kg. Diets were fed for 28 d and the individual BW of pigs on days 1 and 28 were recorded. Fecal samples were collected from days 25 to 27 to calculate apparent total tract digestibility (ATTD) of Ca and P. On the last day of the experiment, all pigs were euthanized, and the left femur was removed and analyzed for ash, Ca, and P. Results indicated that growth performance, ATTD of Ca and P, and bone ash measurements were reduced (P < 0.05) in NC fed pigs compared with PC fed pigs. However, growth performance, ATTD of Ca and P, and bone ash measurements were improved (linear and quadratic, P < 0.05) by including increasing concentrations of phytase to the NC diet. In Exp. 2, experimental procedures were similar to those used in Exp. 1. Forty-eight pigs (initial BW: 11.15 ± 0.85 kg) were randomly allotted to 6 dietary treatments in a 28-d experiment. Treatments included a PC diet, an NC diet, and 4 diets in which 500 or 1,000 FTU/kg of either the corn-expressed phytase or a commercial microbial phytase were added to the NC diet. Pigs fed the NC diet had reduced (P < 0.01) final BW, ADG, G:F, and bone ash concentrations compared with pigs fed the PC diet. When 500 FTU/kg phytase was fed, no differences were observed in growth performance or bone ash measurements between phytase sources, and there were no differences in growth performance among pigs fed 1,000 FTU/kg of either phytase source or the PC diet. However, regardless of concentration or source of phytase, pigs fed the PC diet had greater (P < 0.001) amount of bone ash, bone Ca, and bone P compared with pigs fed phytase diets. In conclusion, the corn-expressed phytase is effective in improving growth performance, Ca and P digestibility, and bone measurements in pigs fed diets that are deficient in Ca and P.


Asunto(s)
6-Fitasa/farmacología , Calcio de la Dieta/metabolismo , Escherichia coli/enzimología , Fósforo Dietético/metabolismo , Porcinos/fisiología , Zea mays/enzimología , Alimentación Animal/análisis , Animales , Huesos/efectos de los fármacos , Huesos/fisiología , Dieta/veterinaria , Digestión/efectos de los fármacos , Proteínas de Escherichia coli/farmacología , Heces/química , Femenino , Tracto Gastrointestinal/metabolismo , Masculino , Minerales , Distribución Aleatoria , Aumento de Peso/efectos de los fármacos , Zea mays/genética
8.
J Anim Sci ; 97(2): 727-734, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30445592

RESUMEN

The objective of this experiment was to test the hypothesis that the apparent ileal digestibility (AID) of AA, CP, and GE, the apparent total tract digestibility (ATTD) of CP and GE, and the apparent hindgut digestibility of CP and GE by growing pigs may be improved by supplementing diets with two direct-fed microbials (DFM) containing different Bacillus strains. Twenty-four growing barrows (initial BW: 22.69 ± 1.48 kg) that had a T-cannula installed in the distal ileum were individually housed and randomly allotted to a three diet, three period design with 24 pigs and three 21-d periods. There were eight pigs per diet in each period for a total of 24 observations per diet. Three diets that were based on corn, soybean meal, and distillers dried grains with solubles were formulated. The control diet contained no DFM, but two additional diets contained two different Bacillus strains (Bacillus amyloliquefaciens or Bacillus subtilis). Feed was provided in mash form in two daily meals at 0800 and 1600 hours. The initial 12 d of each period was the adaptation period to the diet. Fecal and urine samples were collected from days 13 to 18, and ileal digesta were collected for 8 h on days 20 and 21. Results indicated that there were no differences among diets in ATTD of CP, but the AID of CP was reduced (P < 0.05) for the B. subtilis diet compared with control and B. amyloliquefaciens diets. Therefore, the apparent hindgut digestibility of CP was greater (P < 0.005) in pigs fed the B. subtilis diet compared with the other diets. The AID of total indispensable, total dispensable, and total AA was greater (P < 0.05) in the B. amyloliquefaciens diet compared with the control diet. There were no differences among diets in ATTD of GE, but the AID of GE was greater for the B. amyloliquefaciens diet than for the control and the B. subtilis diets (P < 0.001). Therefore, the apparent hindgut digestibility of GE was less (P < 0.05) in the B. amyloliquefaciens diet compared with the other diets. The DE (DM basis) for the B. subtilis diet was greater (P < 0.05) compared with the control and the B. amyloliquefaciens diets. In conclusion, supplementation of Bacillus spp. to diets fed to growing pigs may increase the AID of AA and GE, but there appears to be differences among strains of Bacillus spp. in their impact on AA and energy digestibility.


Asunto(s)
Aminoácidos/metabolismo , Alimentación Animal/análisis , Bacillus amyloliquefaciens/fisiología , Bacillus subtilis/fisiología , Suplementos Dietéticos , Porcinos/microbiología , Animales , Dieta/veterinaria , Digestión , Metabolismo Energético/efectos de los fármacos , Heces/química , Tracto Gastrointestinal/metabolismo , Íleon/metabolismo , Masculino , Distribución Aleatoria , Glycine max , Porcinos/fisiología , Zea mays
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA