Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Br J Pharmacol ; 178(10): 2034-2040, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32383227

RESUMEN

Nicotinamide (NAM) is a precursor of vitamin B3 commonly sold over the counter as a nutritional supplement with anti-aging properties. Accumulating preclinical evidence indicates that NAM also mediates oncopreventive effects against a variety of neoplasms. Supporting the translational relevance of dietary NAM supplementation, results from a Phase 3 randomized clinical trial have demonstrated that oral NAM was safe and efficiently reduced the incidence of new non-melanoma skin cancers and actinic keratosis amongst high-risk individuals. However, the molecular and cellular mechanisms that underlie this ability of NAM to delay carcinogenesis remain to be clarified, as discussed in this short review. LINKED ARTICLES: This article is part of a themed issue on Cellular metabolism and diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.10/issuetoc.


Asunto(s)
Neoplasias , Niacinamida , Suplementos Dietéticos , Humanos , Neoplasias/prevención & control , Ensayos Clínicos Controlados Aleatorios como Asunto
2.
Nat Commun ; 11(1): 3819, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32732875

RESUMEN

Hormone receptor (HR)+ breast cancer (BC) causes most BC-related deaths, calling for improved therapeutic approaches. Despite expectations, immune checkpoint blockers (ICBs) are poorly active in patients with HR+ BC, in part reflecting the lack of preclinical models that recapitulate disease progression in immunocompetent hosts. We demonstrate that mammary tumors driven by medroxyprogesterone acetate (M) and 7,12-dimethylbenz[a]anthracene (D) recapitulate several key features of human luminal B HR+HER2- BC, including limited immune infiltration and poor sensitivity to ICBs. M/D-driven oncogenesis is accelerated by immune defects, demonstrating that M/D-driven tumors are under immunosurveillance. Safe nutritional measures including nicotinamide (NAM) supplementation efficiently delay M/D-driven oncogenesis by reactivating immunosurveillance. NAM also mediates immunotherapeutic effects against established M/D-driven and transplantable BC, largely reflecting increased type I interferon secretion by malignant cells and direct stimulation of immune effector cells. Our findings identify NAM as a potential strategy for the prevention and treatment of HR+ BC.


Asunto(s)
Neoplasias de la Mama/terapia , Inmunoterapia/métodos , Niacinamida/administración & dosificación , Receptor ErbB-2/inmunología , 9,10-Dimetil-1,2-benzantraceno , Animales , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/metabolismo , Carcinogénesis/efectos de los fármacos , Carcinogénesis/inmunología , Progresión de la Enfermedad , Femenino , Humanos , Interferón Tipo I/inmunología , Interferón Tipo I/metabolismo , Neoplasias Mamarias Experimentales/inducido químicamente , Neoplasias Mamarias Experimentales/inmunología , Neoplasias Mamarias Experimentales/prevención & control , Acetato de Medroxiprogesterona , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor ErbB-2/metabolismo , Análisis de Supervivencia
3.
Immunol Rev ; 280(1): 165-174, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29027230

RESUMEN

Cancer cells are subjected to constant selection by the immune system, meaning that tumors that become clinically manifest have managed to subvert or hide from immunosurveillance. Immune control can be facilitated by induction of autophagy, as well as by polyploidization of cancer cells. While autophagy causes the release of ATP, a chemotactic signal for myeloid cells, polyploidization can trigger endoplasmic reticulum stress with consequent exposure of the "eat-me" signal calreticulin on the cell surface, thereby facilitating the transfer of tumor antigens into dendritic cells. Hence, both autophagy and polyploidization cause the emission of adjuvant signals that ultimately elicit immune control by CD8+ T lymphocytes. We investigated the possibility that autophagy and polyploidization might also affect the antigenicity of cancer cells by altering the immunopeptidome. Mass spectrometry led to the identification of peptides that were presented on major histocompatibility complex (MHC) class I molecules in an autophagy-dependent fashion or that were specifically exposed on the surface of polyploid cells, yet lost upon passage of such cells through immunocompetent (but not immunodeficient) mice. However, the preferential recognition of autophagy-competent and polyploid cells by the innate and cellular immune systems did not correlate with the preferential recognition of such peptides in vivo. Moreover, vaccination with such peptides was unable to elicit tumor growth-inhibitory responses in vivo. We conclude that autophagy and polyploidy increase the immunogenicity of cancer cells mostly by affecting their adjuvanticity rather than their antigenicity.


Asunto(s)
Adyuvantes Inmunológicos , Antígenos de Neoplasias/inmunología , Muerte Celular , Vigilancia Inmunológica , Neoplasias/inmunología , Adenosina Trifosfato/metabolismo , Animales , Estrés del Retículo Endoplásmico , Humanos , Ratones , Monitorización Inmunológica , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA