Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plants (Basel) ; 13(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38592867

RESUMEN

In light of expected climate change, it is important to seek nature-based solutions that can contribute to the protection of our planet as well as to help overcome the emerging adverse changes. In an agricultural context, increasing plant resistance to abiotic stress seems to be crucial. Therefore, the scope of the presented research was focused on the application of botanical extracts that exerted positive effects on model plants growing under controlled laboratory conditions, as well as plants subjected to sorbitol-induced osmotic stress. Foliar spraying increased the length and fresh mass of the shoots (e.g., extracts from Taraxacum officinale, Trifolium pratense, and Pisum sativum) and the roots (e.g., Solidago gigantea, Hypericum perforatum, and Pisum sativum) of cabbage seedlings grown under stressful conditions, as well as their content of photosynthetic pigments (Pisum sativum, Lens culinaris, and Hypericum perforatum) along with total phenolic compounds (Hypericum perforatum, Taraxacum officinale, and Urtica dioica). The antioxidant activity of the shoots measured with the use of DDPH (Pisum sativum, Taraxacum officinale, Urtica dioica, and Hypericum perforatum), ABTS (Trifolium pratense, Symphytum officinale, Valeriana officinalis, Pisum sativum, and Lens culinaris), and FRAP (Symphytum officinale, Valeriana officinalis, Urtica dioica, Hypericum perforatum, and Taraxacum officinale) assays was also enhanced in plants exposed to osmotic stress. Based on these findings, the most promising formulation based on Symphytum officinale was selected and subjected to transcriptomic analysis. The modification of the expression of the following genes was noted: Bol029651 (glutathione S-transferase), Bol027348 (chlorophyll A-B binding protein), Bol015841 (S-adenosylmethionine-dependent methyltransferases), Bol009860 (chlorophyll A-B binding protein), Bol022819 (GDSL lipase/esterase), Bol036512 (heat shock protein 70 family), Bol005916 (DnaJ Chaperone), Bol028754 (pre-mRNA splicing Prp18-interacting factor), Bol009568 (heat shock protein Hsp90 family), Bol039362 (gibberellin regulated protein), Bol007693 (B-box-type zinc finger), Bol034610 (RmlC-like cupin domain superfamily), Bol019811 (myb_SHAQKYF: myb-like DNA-binding domain, SHAQKYF class), Bol028965 (DA1-like Protein). Gene Ontology functional analysis indicated that the application of the extract led to a decrease in the expression of many genes related to the response to stress and photosynthetic systems, which may confirm a reduction in the level of oxidative stress in plants treated with biostimulants. The conducted studies showed that the use of innovative plant-based products exerted positive effects on crops and can be used to supplement current cultivation practices.

2.
Oxid Med Cell Longev ; 2021: 5561672, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34211628

RESUMEN

There are growing interests in the complex combinations of natural compounds that may advance the therapy of cancer. Such combinations already exist in foods, and a good representative is seed oils. Two raspberry oils: cold pressed (ROCOP) and one extracted by supercritical CO2 (ROSCO2) were evaluated for their chemical characteristics and oil emulsions for cell suppression potential against colon adenocarcinoma (LoVo), doxorubicin-resistant colon adenocarcinoma (LoVo/DX), breast cancer (MCF7), doxorubicin-resistant breast cancer (MCF7/DX), and lung cancer (A549) cell lines. The cytotoxicity was also assessed on normal human dermal fibroblasts (NHDFs). With increasing concentration of raspberry oil emulsions (0.5-10%), increasing inhibition of cancer cell viability and proliferation in all of the lines was observed, with different degrees of potency between cancer types and oil tested. ROSCO2 strongly induced free radical production and DNA strand damage in LoVo and MCF7 cells especially doxorubicin-resistant lines. This suggests that ROSCO2 engages and effectively targets the vulnerabilities of the cancer cell. Generally, both ROSCO2 and ROCOP could be a nontoxic support in therapy of selected human cancers.


Asunto(s)
Neoplasias/tratamiento farmacológico , Óxido Nítrico/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fitoquímicos/uso terapéutico , Aceites de Plantas/química , Especies Reactivas de Oxígeno/metabolismo , Rubus/química , Humanos , Fitoquímicos/farmacología
3.
Planta ; 251(2): 50, 2020 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-31950395

RESUMEN

MAIN CONCLUSION: Upregulation of the terpenoid pathway and increased ABA content in flax upon Fusarium infection leads to activation of the early plant's response (PR genes, cell wall remodeling, and redox status). Plants have developed a number of defense strategies against the adverse effects of fungi such as Fusarium oxysporum. One such defense is the production of antioxidant secondary metabolites, which fall into two main groups: the phenylpropanoids and the terpenoids. While functions and biosynthesis of phenylpropanoids have been extensively studied, very little is known about the genes controlling the terpenoid synthesis pathway in flax. They can serve as antioxidants, but are also substrates for a plethora of different compounds, including those of regulatory functions, like ABA. ABA's function during pathogen attack remains obscure and often depends on the specific plant-pathogen interactions. In our study we showed that in flax the non-mevalonate pathway is strongly activated in the early hours of pathogen infection and that there is a redirection of metabolites towards ABA synthesis. The elevated synthesis of ABA correlates with flax resistance to F. oxysporum, thus we suggest ABA to be a positive regulator of the plant's early response to the infection.


Asunto(s)
Ácido Abscísico/metabolismo , Vías Biosintéticas , Lino/metabolismo , Lino/microbiología , Fusarium/fisiología , Enfermedades de las Plantas/microbiología , Plastidios/metabolismo , Terpenos/metabolismo , Secuencia de Bases , ADN Complementario/genética , ADN de Hongos/análisis , Lino/genética , Fusarium/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Glucosiltransferasas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , ARN Mensajero/genética , ARN Mensajero/metabolismo
4.
Curr Pharm Des ; 25(20): 2241-2263, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31333096

RESUMEN

The incidence of inflammatory skin diseases is increasing, so the search for relevant therapeutics is of major concern. Plants are rich in phytochemicals which can alleviate many symptoms. In this review, we concentrate on compounds found in the seeds of widely cultivated plants, regularly used for oil production. The oils from these plants are often used to alleviate the symptoms of inflammatory diseases through synergetic action of unsaturated fatty acids and other phytochemicals most commonly derived from the terpenoid pathway. The knowledge of the chemical composition of oil seeds and the understanding of the mechanisms of action of single components should allow for a more tailored approach for the treatment for many diseases. In many cases, these seeds could serve as an efficient material for the isolation of pure phytochemicals. Here we present the content of phytochemicals, assumed to be responsible for healing properties of plant oils in a widely cultivated oil seed plants and review the proposed mechanism of action for fatty acids, selected mono-, sesqui-, di- and triterpenes, carotenoids, tocopherol and polyphenols.


Asunto(s)
Inflamación/tratamiento farmacológico , Fitoterapia , Aceites de Plantas/uso terapéutico , Enfermedades de la Piel/tratamiento farmacológico , Humanos , Fitoquímicos/uso terapéutico , Semillas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA