Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Plants ; 9(1): 68-80, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36646831

RESUMEN

The genomes of cytoplasmic organelles (mitochondria and plastids) are maternally inherited in most eukaryotes, thus excluding organellar genomes from the benefits of sexual reproduction and recombination. The mechanisms underlying maternal inheritance are largely unknown. Here we demonstrate that two independently acting mechanisms ensure maternal inheritance of the plastid (chloroplast) genome. Conducting large-scale genetic screens for paternal plastid transmission, we discovered that mild chilling stress during male gametogenesis leads to increased entry of paternal plastids into sperm cells and strongly increased paternal plastid transmission. We further show that the inheritance of paternal plastid genomes is controlled by the activity of a genome-degrading exonuclease during pollen maturation. Our data reveal that (1) maternal inheritance breaks down under specific environmental conditions, (2) an organelle exclusion mechanism and a genome degradation mechanism act in concert to prevent paternal transmission of plastid genes and (3) plastid inheritance is determined by complex gene-environment interactions.


Asunto(s)
Polen , Semillas , Polen/genética , Plastidios/genética , Mitocondrias/genética , Cloroplastos
2.
Plant Physiol ; 188(1): 637-652, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34623449

RESUMEN

The high-value carotenoid astaxanthin (3,3'-dihydroxy-ß,ß-carotene-4,4'-dione) is one of the most potent antioxidants in nature. In addition to its large-scale use in fish farming, the pigment has applications as a food supplement and an active ingredient in cosmetics and in pharmaceuticals for the treatment of diseases linked to reactive oxygen species. The biochemical pathway for astaxanthin synthesis has been introduced into seed plants, which do not naturally synthesize this pigment, by nuclear and plastid engineering. The highest accumulation rates have been achieved in transplastomic plants, but massive production of astaxanthin has resulted in severe growth retardation. What limits astaxanthin accumulation levels and what causes the mutant phenotype is unknown. Here, we addressed these questions by making astaxanthin synthesis in tobacco (Nicotiana tabacum) plastids inducible by a synthetic riboswitch. We show that, already in the uninduced state, astaxanthin accumulates to similarly high levels as in transplastomic plants expressing the pathway constitutively. Importantly, the inducible plants displayed wild-type-like growth properties and riboswitch induction resulted in a further increase in astaxanthin accumulation. Our data suggest that the mutant phenotype associated with constitutive astaxanthin synthesis is due to massive metabolite turnover, and indicate that astaxanthin accumulation is limited by the sequestration capacity of the plastid.


Asunto(s)
Nicotiana/genética , Nicotiana/metabolismo , Plastidios/genética , Plastidios/metabolismo , Riboswitch/genética , Xantófilas/metabolismo , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Plantas Modificadas Genéticamente
3.
J Exp Bot ; 71(9): 2670-2677, 2020 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-31903493

RESUMEN

Transplastomic potato plants expressing double-stranded RNA (dsRNA) targeted against essential genes of the Colorado potato beetle (CPB) can be lethal to larvae by triggering an RNA interference (RNAi) response. High accumulation levels of dsRNAs in plastids are crucial to confer an efficient RNAi response in the insects. However, whether length and sequence of the dsRNA determine the efficacy of RNAi and/or influence the level of dsRNA accumulation in plastids is not known. We compared the RNAi efficacy of different lengths of dsRNA targeted against the CPB ß-Actin gene (ACT) by feeding in vitro-synthesized dsRNAs to larvae. We showed that, while the 60 bp dsRNA induced only a relatively low RNAi response in CPB, dsRNAs of 200 bp and longer caused high mortality and similar larval growth retardation. When the dsRNAs were expressed from the plastid (chloroplast) genome of potato plants, we found that their accumulation were negatively correlated with length. The level of dsRNA accumulation was positively associated with the observed mortality, suppression of larval growth, and suppression of target gene expression. Importantly, transplastomic potato plants expressing the 200 bp dsRNA were better protected from CPB than plants expressing the 297 bp dsRNA, the best-performing line in our previous study. Our results suggest that the length of dsRNAs is an important factor that influences their accumulation in plastids and thus determines the strength of the insecticidal RNAi effect. Our findings will aid the design of optimized dsRNA expression constructs for plant protection by plastid-mediated RNAi.


Asunto(s)
Escarabajos , Solanum tuberosum , Animales , Escarabajos/genética , Plastidios , Interferencia de ARN , ARN Bicatenario/genética , Solanum tuberosum/genética
4.
Plant J ; 102(4): 730-746, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31856320

RESUMEN

Chloroplast nucleoids are large, compact nucleoprotein structures containing multiple copies of the plastid genome. Studies on structural and quantitative changes of plastid DNA (ptDNA) during leaf development are scarce and have produced controversial data. We have systematically investigated nucleoid dynamics and ptDNA quantities in the mesophyll of Arabidopsis, tobacco, sugar beet, and maize from the early post-meristematic stage until necrosis. DNA of individual nucleoids was quantified by DAPI-based supersensitive epifluorescence microscopy. Nucleoids occurred in scattered, stacked, or ring-shaped arrangements and in recurring patterns during leaf development that was remarkably similar between the species studied. Nucleoids per organelle varied from a few in meristematic plastids to >30 in mature chloroplasts (corresponding to about 20-750 nucleoids per cell). Nucleoid ploidies ranged from haploid to >20-fold even within individual organelles, with average values between 2.6-fold and 6.7-fold and little changes during leaf development. DNA quantities per organelle increased gradually from about a dozen plastome copies in tiny plastids of apex cells to 70-130 copies in chloroplasts of about 7 µm diameter in mature mesophyll tissue, and from about 80 plastome copies in meristematic cells to 2600-3300 copies in mature diploid mesophyll cells without conspicuous decline during leaf development. Pulsed-field electrophoresis, restriction of high-molecular-weight DNA from chloroplasts and gerontoplasts, and CsCl equilibrium centrifugation of single-stranded and double-stranded ptDNA revealed no noticeable fragmentation of the organelle DNA during leaf development, implying that plastid genomes in mesophyll tissues are remarkably stable until senescence.


Asunto(s)
Genoma de Plastidios/genética , Magnoliopsida/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Beta vulgaris/genética , Beta vulgaris/crecimiento & desarrollo , Cloroplastos/genética , Magnoliopsida/crecimiento & desarrollo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Plastidios/genética , Nicotiana/genética , Nicotiana/crecimiento & desarrollo , Zea mays/genética , Zea mays/crecimiento & desarrollo
5.
Plant Biotechnol J ; 17(9): 1814-1822, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30803101

RESUMEN

CRISPR/Cas systems provide bacteria and archaea with molecular immunity against invading phages and foreign plasmids. The class 2 type VI CRISPR/Cas effector Cas13a is an RNA-targeting CRISPR effector that provides protection against RNA phages. Here we report the repurposing of CRISPR/Cas13a to protect potato plants from a eukaryotic virus, Potato virus Y (PVY). Transgenic potato lines expressing Cas13a/sgRNA (small guide RNA) constructs showed suppressed PVY accumulation and disease symptoms. The levels of viral resistance correlated with the expression levels of the Cas13a/sgRNA construct in the plants. Our data further demonstrate that appropriately designed sgRNAs can specifically interfere with multiple PVY strains, while having no effect on unrelated viruses such as PVA or Potato virus S. Our findings provide a novel and highly efficient strategy for engineering crops with resistances to viral diseases.


Asunto(s)
Sistemas CRISPR-Cas , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Potyvirus/patogenicidad , Solanum tuberosum/genética , Enfermedades de las Plantas/virología , ARN Guía de Kinetoplastida/genética , Solanum tuberosum/virología
6.
J Exp Bot ; 69(15): 3759-3771, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29757407

RESUMEN

Roots and root-released organic anions play important roles in uptake of phosphorus (P), an essential macronutrient for food production. Oat, ranking sixth in the world's cereal production, contains valuable nutritional compounds and can withstand poor soil conditions. Our aim was to investigate root transcriptional and metabolic responses of oat grown under P-deficient and P-sufficient conditions. We conducted a hydroponic experiment and measured root morphology and organic anion exudation, and analysed changes in the transcriptome and metabolome. Oat roots showed enhanced citrate and malate exudation after 4 weeks of P deficiency. After 10 d of P deficiency, we identified 9371 differentially expressed transcripts with a 2-fold or greater change (P<0.05): 48 sequences predicted to be involved in organic anion biosynthesis and efflux were consistently up-regulated; 24 up-regulated transcripts in oat were also found to be up-regulated upon P starvation in rice and wheat under similar conditions. Phosphorylated metabolites (i.e. glucose-6-phosphate, myo-inositol phosphate) were reduced dramatically, while citrate and malate, some sugars and amino acids increased slightly in P-deficient oat roots. Our data are consistent with a strategy of increased organic anion efflux and a shift in primary metabolism in response to P deficiency in oat.


Asunto(s)
Avena/genética , Metaboloma , Fósforo/deficiencia , Transcriptoma , Aniones/metabolismo , Avena/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
7.
Biochem J ; 475(4): 759-773, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29358189

RESUMEN

While mitochondrial mutants of the respiratory machinery are rare and often lethal, cytoplasmic male sterility (CMS), a mitochondrially inherited trait that results in pollen abortion, is frequently encountered in wild populations. It generates a breeding system called gynodioecy. In Beta vulgaris ssp. maritima, a gynodioecious species, we found CMS-G to be widespread across the distribution range of the species. Despite the sequencing of the mitochondrial genome of CMS-G, the mitochondrial sterilizing factor causing CMS-G is still unknown. By characterizing biochemically CMS-G, we found that the expression of several mitochondrial proteins is altered in CMS-G plants. In particular, Cox1, a core subunit of the cytochrome c oxidase (complex IV), is larger but can still assemble into complex IV. However, the CMS-G-specific complex IV was only detected as a stabilized dimer. We did not observe any alteration of the affinity of complex IV for cytochrome c; however, in CMS-G, complex IV capacity is reduced. Our results show that CMS-G is maintained in many natural populations despite being associated with an atypical complex IV. We suggest that the modified complex IV could incur the associated cost predicted by theoretical models to maintain gynodioecy in wild populations.


Asunto(s)
Beta vulgaris/genética , Citoplasma/genética , Complejo IV de Transporte de Electrones/genética , Infertilidad Vegetal/genética , Beta vulgaris/crecimiento & desarrollo , Genoma Mitocondrial/genética , Mitocondrias/enzimología , Mitocondrias/genética , Mutación , Polen/genética
8.
Nat Plants ; 3(12): 918-919, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29180811

Asunto(s)
ADN , Polen
9.
Elife ; 52016 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-27296645

RESUMEN

Artemisinin-based therapies are the only effective treatment for malaria, the most devastating disease in human history. To meet the growing demand for artemisinin and make it accessible to the poorest, an inexpensive and rapidly scalable production platform is urgently needed. Here we have developed a new synthetic biology approach, combinatorial supertransformation of transplastomic recipient lines (COSTREL), and applied it to introduce the complete pathway for artemisinic acid, the precursor of artemisinin, into the high-biomass crop tobacco. We first introduced the core pathway of artemisinic acid biosynthesis into the chloroplast genome. The transplastomic plants were then combinatorially supertransformed with cassettes for all additional enzymes known to affect flux through the artemisinin pathway. By screening large populations of COSTREL lines, we isolated plants that produce more than 120 milligram artemisinic acid per kilogram biomass. Our work provides an efficient strategy for engineering complex biochemical pathways into plants and optimizing the metabolic output.


Asunto(s)
Ingeniería Metabólica/métodos , Redes y Vías Metabólicas/genética , Biología Molecular/métodos , Nicotiana/metabolismo , Plantas Medicinales/metabolismo , Biología Sintética/métodos , Antimaláricos/metabolismo , Artemisininas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Medicinales/genética , Nicotiana/genética
10.
Science ; 347(6225): 991-4, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25722411

RESUMEN

Double-stranded RNAs (dsRNAs) targeted against essential genes can trigger a lethal RNA interference (RNAi) response in insect pests. The application of this concept in plant protection is hampered by the presence of an endogenous plant RNAi pathway that processes dsRNAs into short interfering RNAs. We found that long dsRNAs can be stably produced in chloroplasts, a cellular compartment that appears to lack an RNAi machinery. When expressed from the chloroplast genome, dsRNAs accumulated to as much as 0.4% of the total cellular RNA. Transplastomic potato plants producing dsRNAs targeted against the ß-actin gene of the Colorado potato beetle, a notorious agricultural pest, were protected from herbivory and were lethal to its larvae. Thus, chloroplast expression of long dsRNAs can provide crop protection without chemical pesticides.


Asunto(s)
Actinas/antagonistas & inhibidores , Escarabajos/genética , Productos Agrícolas/parasitología , Control Biológico de Vectores/métodos , Plastidios/genética , Interferencia de ARN , ARN Bicatenario/genética , ARN Interferente Pequeño/genética , Solanum tuberosum/parasitología , Actinas/genética , Animales , Escarabajos/patogenicidad , Productos Agrícolas/genética , Vectores Genéticos , Hojas de la Planta/genética , Hojas de la Planta/parasitología , ARN Interferente Pequeño/metabolismo , Solanum tuberosum/genética , Transformación Genética
11.
Plant Physiol ; 150(4): 2030-44, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19493969

RESUMEN

Gene expression in nongreen plastids is largely uncharacterized. To compare gene expression in potato (Solanum tuberosum) tuber amyloplasts and leaf chloroplasts, amounts of transcripts of all plastid genes were determined by hybridization to plastome arrays. Except for a few genes, transcript accumulation was much lower in tubers compared with leaves. Transcripts of photosynthesis-related genes showed a greater reduction in tubers compared with leaves than transcripts of genes for the genetic system. Plastid genome copy number in tubers was 2- to 3-fold lower than in leaves and thus cannot account for the observed reduction of transcript accumulation in amyloplasts. Both the plastid-encoded and the nucleus-encoded RNA polymerases were active in potato amyloplasts. Transcription initiation sites were identical in chloroplasts and amyloplasts, although some differences in promoter utilization between the two organelles were evident. For some intron-containing genes, RNA splicing was less efficient in tubers than in leaves. Furthermore, tissue-specific differences in editing of ndh transcripts were detected. Hybridization of the plastome arrays with RNA extracted from polysomes indicated that, in tubers, ribosome association of transcripts was generally low. Nevertheless, some mRNAs, such as the transcript of the fatty acid biosynthesis gene accD, displayed relatively high ribosome association. Selected nuclear genes involved in plastid gene expression were generally significantly less expressed in tubers than in leaves. Hence, compared with leaf chloroplasts, gene expression in tuber amyloplasts is much lower, with control occurring at the transcriptional, posttranscriptional, and translational levels. Candidate regulatory sequences that potentially can improve plastid (trans)gene expression in amyloplasts have been identified.


Asunto(s)
Cloroplastos/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Hojas de la Planta/genética , Tubérculos de la Planta/genética , Solanum tuberosum/genética , Transcripción Genética , Secuencia de Aminoácidos , Secuencia de Bases , Núcleo Celular/genética , Cartilla de ADN/metabolismo , Dosificación de Gen , Genoma del Cloroplasto/genética , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polirribosomas/genética , Regiones Promotoras Genéticas/genética , Biosíntesis de Proteínas , Edición de ARN/genética , Procesamiento Postranscripcional del ARN , Empalme del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
12.
Proc Natl Acad Sci U S A ; 106(16): 6579-84, 2009 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-19332784

RESUMEN

Plastid transformation has become an attractive tool in biotechnology. Because of the prokaryotic nature of the plastid's gene expression machinery, expression elements (promoters and untranslated regions) that trigger high-level foreign protein accumulation in plastids usually also confer high expression in bacterial cloning hosts. This can cause problems, for example, when production of antimicrobial compounds is attempted. Their bactericidal activity can make the cloning of the corresponding genes in plastid transformation vectors impossible. Here, we report a general solution to this problem. We have designed a strategy (referred to as toxin shuttle) that allows the expression in plastids of proteins that are toxic to Escherichia coli. The strategy is based on blocking transcription in E. coli by bacterial transcription terminators upstream of the gene of interest, which subsequently are excised in planta by site-specific recombination. We demonstrate the applicability of the strategy by the high-level expression in plastids (to up to 30% of the plant's total soluble protein) of 2 phage-derived protein antibiotics that are toxic to E. coli. We also show that the plastid-produced antibiotics efficiently kill pathogenic strains of Streptococcus pneumoniae, the causative agent of pneumonia, thus providing a promising strategy for the production of next-generation antibiotics in plants.


Asunto(s)
Antibacterianos/biosíntesis , Antibacterianos/uso terapéutico , Péptidos Catiónicos Antimicrobianos/biosíntesis , Biotecnología/métodos , Plastidios/metabolismo , Neumonía/tratamiento farmacológico , Antibacterianos/toxicidad , Bacteriólisis/efectos de los fármacos , Vectores Genéticos/genética , Genoma de Plastidios/genética , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Datos de Secuencia Molecular , ARN Mensajero/genética , ARN Mensajero/metabolismo , Streptococcus pneumoniae/efectos de los fármacos , Nicotiana , Toxinas Biológicas/toxicidad , Transcripción Genética/efectos de los fármacos , Transformación Genética/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA