Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Philos Trans R Soc Lond B Biol Sci ; 375(1792): 20190154, 2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-31884922

RESUMEN

The brain ventricles are interconnected, elaborate cavities that traverse the brain. They are filled with cerebrospinal fluid (CSF) that is, to a large part, produced by the choroid plexus, a secretory epithelium that reaches into the ventricles. CSF is rich in cytokines, growth factors and extracellular vesicles that glide along the walls of ventricles, powered by bundles of motile cilia that coat the ventricular wall. We review the cellular and biochemical properties of the ventral part of the third ventricle that is surrounded by the hypothalamus. In particular, we consider the recently discovered intricate network of cilia-driven flows that characterize this ventricle and discuss the potential physiological significance of this flow for the directional transport of CSF signals to cellular targets located either within the third ventricle or in the adjacent hypothalamic brain parenchyma. Cilia-driven streams of signalling molecules offer an exciting perspective on how fluid-borne signals are dynamically transmitted in the brain. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.


Asunto(s)
Transporte Biológico , Cilios/fisiología , Tercer Ventrículo/fisiología , Hipotálamo/fisiología
2.
Circ Res ; 90(3): 289-96, 2002 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-11861417

RESUMEN

Interruption of periodic wave propagation by the nucleation and subsequent disintegration of spiral waves is thought to mediate the transition from normal sinus rhythm to ventricular fibrillation. This sequence of events may be precipitated by a period doubling bifurcation, manifest as a beat-to-beat alternation, or alternans, of cardiac action potential duration and conduction velocity. How alternans causes the local conduction block required for initiation of spiral wave reentry remains unclear, however. In the present study, a mechanism for conduction block was derived from experimental studies in linear strands of cardiac tissue and from computer simulations in ionic and coupled maps models of homogeneous one-dimensional fibers. In both the experiments and the computer models, rapid periodic pacing induced marked spatiotemporal heterogeneity of cellular electrical properties, culminating in paroxysmal conduction block. These behaviors resulted from a nonuniform distribution of action potential duration alternans, secondary to alternans of conduction velocity. This link between period doubling bifurcations of cellular electrical properties and conduction block may provide a generic mechanism for the onset of tachycardia and fibrillation.


Asunto(s)
Bloqueo Cardíaco/fisiopatología , Sistema de Conducción Cardíaco/fisiopatología , Ventrículos Cardíacos/fisiopatología , Modelos Cardiovasculares , Ramos Subendocárdicos/fisiopatología , Fibrilación Ventricular/fisiopatología , Potenciales de Acción , Animales , Estimulación Cardíaca Artificial , Simulación por Computador , Perros , Técnicas Electrofisiológicas Cardíacas , Femenino , Bloqueo Cardíaco/etiología , Técnicas In Vitro , Masculino , Fibrilación Ventricular/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA