Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Assist Reprod Genet ; 35(8): 1359-1366, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29882092

RESUMEN

Here we examine recent evidence suggesting that many drugs and diet supplements (DS), experimental AMP-activated protein kinase (AMPK) agonists as well as energy-depleting stress, lead to decreases in anabolism, growth or proliferation, and potency of cultured oocytes, embryos, and stem cells in an AMPK-dependent manner. Surprising data for DS and drugs that have some activity as AMPK agonists in in vitro experiments show possible toxicity. This needs to be balanced against a preponderance of evidence in vivo that these drugs and DS are beneficial for reproduction. We here discuss and analyze data that leads to two possible conclusions: First, although DS and drugs that have some of their therapeutic mechanisms mediated by AMPK activity associated with low ATP levels, some of the associated health problems in vivo and in vitro fertilization/assisted reproductive technologies (IVF/ART) may be better-treated by increasing ATP production using CoQ10 (Ben-Meir et al., Aging Cell 14:887-895, 2015). This enables high developmental trajectories simultaneous with solving stress by energy-requiring responses. In IVF/ART, it is ultimately best to maintain handling and culture of gametes and embryos in the quietest state with low metabolic activity (Leese et al., Mol Hum Reprod 14:667-672, 2008; Leese, Bioessays 24 (9):845-849, 2002) using back-to-nature or simplex algorithms to identify optima (Biggers, Reprod Biomed Online 4 Suppl 1:30-38, 2002). Stress markers, such as checkpoint proteins like TRP53 (aka p53) (Ganeshan et al., Exp Cell Res 358:227-233, 2017); Ganeshan et al., Biol Reprod 83:958-964, 2010) and a small set of kinases from the protein kinome that mediate enzymatic stress responses, can also be used to define optima. But, some gametes or embryos may have been stressed in vivo prior to IVF/ART or IVF/ART optimized for one outcome may be suboptimal for another. Increasing nutrition or adding CoQ10 to increase ATP production (Yang et al., Stem Cell Rev 13:454-464, 2017), managing stress enzyme levels with inhibitors (Xie et al., Mol Hum Reprod 12:217-224, 2006), or adding growth factors such as GM-CSF (Robertson et al., J Reprod Immunol 125:80-88, 2018); Chin et al., Hum Reprod 24:2997-3009, 2009) may increase survival and health of cultured embryos during different stress exposure contexts (Puscheck et al., Adv Exp Med Biol 843:77-128, 2015). We define "stress" as negative stimuli which decrease normal magnitude and speed of development, and these can be stress hormones, reactive oxygen species, inflammatory cytokines, or physical stimuli such as hypoxia. AMPK is normally activated by high AMP, commensurate with low ATP, but it was recently shown that if glucose is present inside the cell, AMPK activation by low ATP/high AMP is suppressed (Zhang et al., Nature 548:112-116, 2017). As we discuss in more detail below, this may also lead to greater AMPK agonist toxicity observed in two-cell embryos that do not import glucose. Stress in embryos and stem cells increases AMPK in large stimulation indexes but also direness indexes; the fastest AMPK activation occurs when stem cells are shifted from optimal oxygen to lower or high levels (Yang et al., J Reprod Dev 63:87-94, 2017). CoQ10 use may be better than risking AMPK-dependent metabolic and developmental toxicity when ATP is depleted and AMPK activated. Second, the use of AMPK agonists, DS, and drugs may best be rationalized when insulin resistance or obesity leads to aberrant hyperglycemia and hypertriglyceridemia, and obesity that negatively affect fertility. Under these conditions, beneficial effects of AMPK on increasing triglyceride and fatty acid and glucose uptake are important, as long as AMPK agonist exposures are not too high or do not occur during developmental windows of sensitivity. During these windows of sensitivity suppression of anabolism, proliferation, and stemness/potency due to AMPK activity, or overexposure may stunt or kill embryos or cause deleterious epigenetic changes.


Asunto(s)
Aborto Espontáneo/patología , Suplementos Dietéticos/efectos adversos , Obesidad/tratamiento farmacológico , Proteínas Quinasas/efectos de los fármacos , Quinasas de la Proteína-Quinasa Activada por el AMP , Aborto Espontáneo/inducido químicamente , Aborto Espontáneo/enzimología , Adenosina Trifosfato/metabolismo , Blastocisto/efectos de los fármacos , Femenino , Humanos , Resistencia a la Insulina/genética , Metformina/uso terapéutico , Oocitos/efectos de los fármacos , Embarazo , Técnicas Reproductivas Asistidas/tendencias , Células Madre/efectos de los fármacos
2.
J Assist Reprod Genet ; 34(12): 1609-1617, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28913567

RESUMEN

PURPOSE: This study tests whether metformin or diet supplement BR-DIM-induced AMP-activated protein kinase (AMPK) mediated effects on development are more pronounced in blastocysts or 2-cell mouse embryos. METHODS: Culture mouse zygotes to two-cell embryos and test effects after 0.5-1 h AMPK agonists' (e.g., Met, BR-DIM) exposure on AMPK-dependent ACCser79P phosphorylation and/or Oct4 by immunofluorescence. Culture morulae to blastocysts and test for increased ACCser79P, decreased Oct4 and for AMPK dependence by coculture with AMPK inhibitor compound C (CC). Test whether Met or BR-DIM decrease growth rates of morulae cultured to blastocyst by counting cells. RESULT(S): Aspirin, metformin, and hyperosmotic sorbitol increased pACC ser79P ~ 20-fold, and BR-DIM caused a ~ 30-fold increase over two-cell embryos cultured for 1 h in KSOMaa but only 3- to 6-fold increase in blastocysts. We previously showed that these stimuli decreased Oct4 40-85% in two-cell embryos that was ~ 60-90% reversible by coculture with AMPK inhibitor CC. However, Oct4 decreased only 30-50% in blastocysts, although reversibility of loss by CC was similar at both embryo stages. Met and BR-DIM previously caused a near-complete cell proliferation arrest in two-cell embryos and here Met caused lower CC-reversible growth decrease and AMPK-independent BR-DIM-induced blastocyst growth decrease. CONCLUSION: Inducing drug or diet supplements decreased anabolism, growth, and stemness have a greater impact on AMPK-dependent processes in two-cell embryos compared to blastocysts.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Blastocisto/citología , Suplementos Dietéticos , Embrión de Mamíferos/citología , Fármacos para la Fertilidad/farmacología , Células Madre/citología , Estrés Fisiológico , Animales , Blastocisto/efectos de los fármacos , Blastocisto/metabolismo , Células Cultivadas , Embrión de Mamíferos/efectos de los fármacos , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Femenino , Masculino , Ratones , Células Madre/efectos de los fármacos , Células Madre/metabolismo
3.
J Assist Reprod Genet ; 33(8): 1027-39, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27230877

RESUMEN

PURPOSE: The purpose of the present study is to test whether metformin, aspirin, or diet supplement (DS) BioResponse-3,3'-Diindolylmethane (BR-DIM) can induce AMP-activated protein kinase (AMPK)-dependent potency loss in cultured embryos and whether metformin (Met) + Aspirin (Asa) or BR-DIM causes an AMPK-dependent decrease in embryonic development. METHODS: The methods used were as follows: culture post-thaw mouse zygotes to the two-cell embryo stage and test effects after 1-h AMPK agonists' (e.g., Met, Asa, BR-DIM, control hyperosmotic stress) exposure on AMPK-dependent loss of Oct4 and/or Rex1 nuclear potency factors, confirm AMPK dependence by reversing potency loss in two-cell-stage embryos with AMPK inhibitor compound C (CC), test whether Met + Asa (i.e., co-added) or DS BR-DIM decreases development of two-cell to blastocyst stage in an AMPK-dependent (CC-sensitive) manner, and evaluate the level of Rex1 and Oct4 nuclear fluorescence in two-cell-stage embryos and rate of two-cell-stage embryo development to blastocysts. RESULT(S): Met, Asa, BR-DIM, or hyperosmotic sorbitol stress induces rapid ~50-85 % Rex1 and/or Oct4 protein loss in two-cell embryos. This loss is ~60-90 % reversible by co-culture with AMPK inhibitor CC. Embryo development from two-cell to blastocyst stage is decreased in culture with either Met + Asa or BR-DIM, and this is either >90 or ~60 % reversible with CC, respectively. CONCLUSION: These experimental designs here showed that Met-, Asa-, BR-DIM-, or sorbitol stress-induced rapid potency loss in two-cell embryos is AMPK dependent as suggested by inhibition of Rex1 and/or Oct4 protein loss with an AMPK inhibitor. The DS BR-DIM or fertility drugs (e.g., Met + Asa) that are used to enhance maternal metabolism to support fertility can also chronically slow embryo growth and block development in an AMPK-dependent manner.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Aspirina/farmacología , Embrión de Mamíferos/citología , Desarrollo Embrionario/efectos de los fármacos , Fármacos para la Fertilidad/farmacología , Indoles/farmacología , Metformina/farmacología , Sorbitol/farmacología , Animales , Suplementos Dietéticos , Técnicas de Cultivo de Embriones , Ratones , Células Madre/citología , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA