Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Biol Sci ; 284(1866)2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29093224

RESUMEN

Masting is the highly variable production of synchronized seed crops, and is a common reproductive strategy in plants. Weather has long been recognized as centrally involved in driving seed production in masting plants. However, the theory behind mechanisms connecting weather and seeding variation has only recently been developed, and still lacks empirical evaluation. We used 12-year long seed production data for 255 holm oaks (Quercus ilex), as well as airborne pollen and meteorological data, and tested whether masting is driven by environmental constraints: phenological synchrony and associated pollination efficiency, and drought-related acorn abscission. We found that warm springs resulted in short pollen seasons, and length of the pollen seasons was negatively related to acorn production, supporting the phenological synchrony hypothesis. Furthermore, the relationship between phenological synchrony and acorn production was modulated by spring drought, and effects of environmental vetoes on seed production were dependent on last year's environmental constraint, implying passive resource storage. Both vetoes affected among-tree synchrony in seed production. Finally, precipitation preceding acorn maturation was positively related to seed production, mitigating apparent resource depletion following high crop production in the previous year. These results provide new insights into mechanisms beyond widely reported weather and seed production correlations.


Asunto(s)
Sequías , Polinización , Quercus/fisiología , Modelos Biológicos , Polen , Quercus/crecimiento & desarrollo , Reproducción , Semillas/crecimiento & desarrollo , España
2.
J Hered ; 101(6): 717-26, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20624756

RESUMEN

Large-scale forest fragmentation can increase interpopulation genetic differentiation and erode the genetic variability of remnant plant populations. In this study, we analyze the extent of clonality and the genetic variability and structure within a holm oak (Quercus ilex) population from Central Spain at 3 patches showing different degrees of fragmentation. For this purpose, we have typed 191 individuals (105 adults and 86 saplings) at 9 microsatellite loci. Microsatellite markers revealed an extensive clonal structure in this species, with most analyzed clumps constituting a single "genet", which in some cases extended over a considerable area (up to 318 m(2)). The maximum distance between "ramets" tended to be higher in the extremely fragmented patch, suggesting that intensive management and environmental perturbation has favored clonal propagation. We have also found evidence that fragmentation has contributed to reduce genetic variability and increase genetic differentiation in holm oak saplings, indicating that the younger cohorts are suffering some negative genetic consequences of long-term population fragmentation. Finally, analyses of fine spatial genetic structure have revealed significant kinship structures up to 20-50 m that were particularly patent in the 2 less fragmented patches. Overall, our findings point to long-term genetic shifts in population structure of holm oaks in fragmented landscapes; however, further research is required on pollen dispersal and gene flow in this species.


Asunto(s)
Ecosistema , Flujo Génico , Variación Genética , Quercus/genética , Biodiversidad , ADN de Plantas/genética , Flujo Genético , Genotipo , Heterocigoto , Repeticiones de Microsatélite , Polen/genética , Reproducción Asexuada , Árboles/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA