Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Heliyon ; 9(12): e22892, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38058440

RESUMEN

After surgical excision of breast cancer, chemotherapy is recommended to eradicate any undiagnosed cancer cells and lower the likelihood of the cancer recurring. Curcumin and quercetin are two old flavonoid medicines used to treat breast cancer. Besides ambient popularity, they possess poor water solubility and poor bioavailability, limiting their usefulness. Hence to overcome these limitations, the present research aims to formulate curcumin and quercetin-loaded nanocochleates and convert them into a gel for localized application to enhance the breast cancer treatment. In this research article, we have developed curcumin and quercetin-loaded nanocochleates gel for breast cancer adjuvant therapy. The particle size, zeta potential encapsulation efficiency, and drug release of quercetin nanocochleates were 327 nm, -16.8 mV, 83.28 %, and 80.23 %, respectively, and that of curcumin nanocochleates were 328.6 nm, -15.0 mV, 82.30 %, and 77.19 %, respectively. The quercetin and curcumin-loaded nanocochleates gel was further characterized for pH, spreadability, and viscosity. The in vitro drug release behaviour of gel is controlled compared to plain quercetin and quercetin nanocochleates. The release of quercetin and curcumin from nanocochleates gel was 78.19 %, and 77.19 %, respectively. The MTT assay results showed quercetin and curcumin-loaded nanocochleates have maximum inhibition compared to control, quercetin alone, quercetin liposomes, and quercetin nanocochleates. Thus the quercetin and curcumin combination nanocochleates gel formulation can be a better option for the localized application in the breast cancer treatment.

2.
Expert Opin Drug Deliv ; 19(12): 1664-1695, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36440488

RESUMEN

INTRODUCTION: Polysaccharide-based hydrogels (PBHs) offer several advantages over their synthetic counterparts. Their natural origin contributes to their nontoxicity, high biocompatibility, and in vivo biodegradability. Their properties can be tuned finely to obtain hydrogels with desired mechanical, structural, and chemical properties. AREAS COVERED: Such versatile characteristics have potentiated the use of PBHs for the delivery of drugs, vaccines, protein and peptide therapeutics, genes, cells, probiotics, bacteriophages, and other therapeutic agents. Recent advances in hydrogel-based formulations such as nanogels, microgels, microneedles, hydrogel beads, nanocarrier-loaded hydrogels, and complexation hydrogels have enabled the precise delivery of a wide range of therapeutics. This review aims to give a holistic overview of hydrogels in the delivery of a variety of therapeutics through different routes. EXPERT OPINION: PBHs have been used to enable the oral delivery of vaccines and other biologicals, thereby allowing self-administration of life-saving vaccines during public health emergencies. There is a lack of commercialized wound dressings for the treatment of chronic wounds. PBH-based wound dressings, especially those based on chitosan and loaded with actives and growth factors, have the potential to help in the long-term treatment of such wounds. Recent developments in the 3D printing of hydrogels can enable the quick and large-scale production of drug-loaded hydrogels.


Asunto(s)
Quitosano , Hidrogeles , Hidrogeles/química , Sistemas de Liberación de Medicamentos , Quitosano/química , Polisacáridos , Péptidos y Proteínas de Señalización Intercelular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA