Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bone ; 137: 115374, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32330695

RESUMEN

Taurine has been shown to have positive effects on bone mass, which are thought to be due in part to its cytoprotective effects on osteoblasts and here we show that taurine also protects osteocytes against cell death due to reactive oxygen species. Using the IDG-SW3 cell line, the expression of the taurine uptake transporter Taut/Slc6a6 is increased during osteoblast to osteocyte differentiation. Taurine had no effect on genes associated with osteoblast to osteocyte differentiation such as Dmp1, Phex or osteocalcin, even at high doses, but a slight yet significant inhibition of alkaline phosphatase was observed at the highest dose (50 mM). No effect was seen on the osteoclast regulatory genes Rankl and Opg, however the wnt antagonist Sost/sclerostin was potently and dose-dependently downregulated in response to taurine supplementation. Taurine also significantly inhibited Dkk1 mRNA expression, but only at 50 mM. Interestingly, osteocytes were found to also be able to synthesize taurine intracellularly, potentially as a self-protective mechanism, but do not secrete the metabolite. A highly significant increase in the expression of cysteine dioxygenase (Cdo), a key enzyme necessary for the production of taurine, was observed with osteoblast to osteocyte differentiation along with a decrease in methionine, the precursor of taurine. For the first time, we describe the synthesis of taurine by osteocytes, potentially to preserve viability and to regulate bone formation through inhibition of sclerostin.


Asunto(s)
Osteocitos , Vía de Señalización Wnt , Muerte Celular , Diferenciación Celular , Osteoblastos , Estrés Oxidativo , Taurina/farmacología
2.
J Orthop Res ; 21(2): 326-34, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12568966

RESUMEN

Osteocytes, the predominant cells in bone, are postulated to be responsible for sensing mechanical and electrical stimuli, transducing signals via gap junctions. Osteocytes respond to induced shear by increasing connexin 43 (Cx43) levels, suggesting that they might be sensitive to physical stimuli like low-frequency electromagnetic fields (EMF). Immature osteoblasts exhibit decreased intercellular communication in response to EMF but no change in Cx43. Here, we examined long term effects of pulsed EMF (PEMF) on MLO-Y4 osteocyte-like cells and ROS 17/2.8 osteoblast-like cells. In MLO-Y4 cell cultures, PEMF for 8 h/day for one, two or four days increased alkaline phosphatase activity but had no effect on cell number or osteocalcin. Transforming growth factor beta-1 (TGF-beta 1) and prostaglandin E(2) were increased, and NO(2-) was altered. PEMFs effect on TGF-beta1 was via a prostaglandin-dependent mechanism involving Cox-1 but not Cox-2. In ROS 17/2.8 cells, PEMF for 24, 48 or 72 h did not affect cell number, osteocalcin mRNA or osteocalcin protein. PEMF reduced Cx43 protein in both cells. Longer exposures decreased Cx43 mRNA. This indicates that cells in the osteoblast lineage, including well-differentiated osteoblast-like ROS 17/2.8 cells and terminally differentiated osteocyte-like MLO-Y4 cells, respond to PEMF with changes in local factor production and reduced Cx43, suggesting decreased gap junctional signaling.


Asunto(s)
Conexina 43/metabolismo , Terapia por Estimulación Eléctrica , Campos Electromagnéticos , Osteoblastos/efectos de la radiación , Osteocitos/efectos de la radiación , Fosfatasa Alcalina/metabolismo , Animales , Conexina 43/genética , Ciclooxigenasa 1 , Dinoprostona/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Proteínas de la Membrana , Ratones , Ratones Transgénicos , Nitritos/metabolismo , Osteoblastos/metabolismo , Osteoblastos/patología , Osteocitos/metabolismo , Osteocitos/patología , Fenotipo , Prostaglandina-Endoperóxido Sintasas/metabolismo , ARN Mensajero/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1 , Células Tumorales Cultivadas
3.
Calcif Tissue Int ; 71(6): 519-29, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12232675

RESUMEN

Osteoblast phenotypic expression in monolayer culture depends on surface microtopography. Here we tested the hypothesis that mineralized bone nodule formation in response to osteotropic agents such as bone morphogenetic protein-2 (BMP-2) and dexamethasone is also influenced by surface microtopography. Fetal rat calvarial (FRC) cells were cultured on Ti implant materials (PT [pretreated], Ra = 0.6 microm; SLA [course grit blasted and acid etched], Ra = 4.0 microm; TPS [Ti plasma sprayed], Ra = 5.2 microm) in the presence of either BMP-2 (20 ng/ml) or 10(-8) M dexamethasone (Dex). At 14 days post-confluence, a homogenous layer of cells covered the surfaces, and stacks of cells that appeared to be nodules emerging from the culture surface were present in some areas on all three Ti surfaces. Cell proliferation decreased while alkaline phosphatase specific activity (ALPase) and nodule number generally increased with increasing surface roughness in both control and treated cultures. There was no difference in cell number between the control and Dex-treated cultures for a particular surface, but BMP-2 significantly reduced cell number compared with control or Dex-treated cultures. Treatment with Dex or BMP-2 further increased ALPase on all surfaces except for PT cultures with Dex. Dex had no effect on nodule area in cultures grown on PT or SLA disks, yet increased nodule number by more than 100% in cultures on PT disks. Though the effect of BMP-2 on nodule number was the same as Dex, BMP-2 increased nodule area on all surfaces except TPS, where area was decreased. Ca and P content of the cell layers in control cultures did not vary with surface roughness. However, cultures treated with Dex had increased Ca content on all surfaces, but the greatest increase was seen on SLA and TPS. BMP-2 increased Ca content in cultures on all surfaces, with the greatest increase on the PT surface. BMP-2 treatment increased P content on all surfaces, whereas Dex only increased P on rough surfaces. Of all cultures examined, the Ca/P weight ratio was 2:1 only on rough surfaces with BMP-2, indicating the presence of bone-like apatite. This was further validated by Fourier transform infrared (FTIR) imaging showing a close association between mineral and matrix on TPS and SLA surfaces with BMP-2-treated cells, and individual spectra indicated the presence of an apatitic mineral phase comparable to bone. In contrast, mineral on the smooth surface of BMP-2-treated cultures and on all surfaces where cultures were treated with Dex was not associated with the matrix and the spectra, not typical of bone apatite, implying dystrophic mineralization. This demonstrates that interactions between growth factor or hormone and surface microtopography can modulate bone cell differentiation and mineralization.


Asunto(s)
Calcificación Fisiológica/fisiología , Osteoblastos/metabolismo , Titanio , Factor de Crecimiento Transformador beta , Fosfatasa Alcalina/metabolismo , Animales , Proteína Morfogenética Ósea 2 , Proteínas Morfogenéticas Óseas/farmacología , Calcio/metabolismo , Recuento de Células , Células Cultivadas , Dexametasona/farmacología , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Fósforo/metabolismo , Ratas , Cráneo/citología , Cráneo/efectos de los fármacos , Cráneo/embriología , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie
4.
J Periodontol ; 71(4): 586-97, 2000 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10807123

RESUMEN

BACKGROUND: Implant surface roughness and chemical composition, as well as other factors, affect the ability of osteogenic cells to form bone adjacent to an implant. The same principles may also apply to the tooth root and some reports have shown that surface modification of the root may lead to improved restoration of the periodontal apparatus. The most common of these surface modification techniques involves demineralization with citric acid or treatment with tetracycline to expose collagen fibrils. In addition, during normal bone remodeling, osteoclasts demineralize the extracellular matrix, leaving resorption pits and exposed collagen fibrils. In this study, the effect of different dentin surface-preparation techniques on osteoblasts were compared. METHODS: Slices of sperm whale dentin were mechanically polished and surfaces were treated with tetracycline-HCl (TCN) or were cultured with mouse bone marrow cells to create a surface with osteoclast (OC) resorption pits or left untreated. Profilometry, x-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) were used to evaluate the 3 different dentin surfaces. MG63 osteoblast-like cells were cultured on the 3 different surfaces and the effect of dentin surface preparation technique on MG63 cell proliferation (cell number), differentiaton (alkaline phosphatase specific activity of isolated cells and cell layer lysates; osteocalcin production), and local factor production (transforming growth factor (TGF)-beta1 and prostaglandin E2 (PGE2) compared. RESULTS: Profilometry showed the polished and TCN surfaces were smooth with comparable Ra values, whereas the OC surfaces were slightly rougher due to resorption pits which covered 3.7% of the surface. XPS measurements showed that TCN treatment reduced the Ca and P content of the surface, indicating that it had dissolved the mineral. Osteoclast-resorption also reduced the Ca and P content, but to a lesser extent. MG63 cell proliferation on polished dentin and tissue culture polystyrene was equivalent. In contrast, cells grown on the TCN- and OC-treated surfaces exhibited increased proliferation. No effect of surface treatment on cell alkaline phosphatase activity was observed, but activity in the cell layer lysates was increased on the TCN- and OC-treated surfaces. Osteocalcin production was reduced on all dentin surfaces, but the greatest reduction was found on the TCN-treated surface. Production of both TGF-beta1 and PGE2 was increased on the treated surfaces. All effects were greatest in cultures grown on the TCN-treated dentin. CONCLUSIONS: These data indicate that demineralization of the dentin surface promotes proliferation of osteoblasts and early differentiation events like production of alkaline phosphatase and autocrine mediators such as PGE2 and TGF-beta1. However, later differentiation events like osteocalcin production are decreased. Osteoclast-mediated bone resorption elicits similar responses; less than 4% of the dentin surface resulted in approximately 75% of the response caused by TCN treatment. These observations suggest that greater attention should be paid to the effects of osteoclastic resorption in designing methods for enhancing bone and cementum formation adjacent to root surfaces.


Asunto(s)
Dentina/ultraestructura , Osteoblastos/fisiología , Osteoclastos/fisiología , Inhibidores de la Síntesis de la Proteína/farmacología , Tetraciclina/farmacología , Fosfatasa Alcalina/análisis , Análisis de Varianza , Animales , Calcio/análisis , Recuento de Células , Diferenciación Celular , División Celular , Colágeno/ultraestructura , Dentina/efectos de los fármacos , Dinoprostona/análisis , Microanálisis por Sonda Electrónica , Matriz Extracelular/ultraestructura , Humanos , Ratones , Microscopía Electrónica de Rastreo , Osteocalcina/análisis , Osteosarcoma/patología , Fósforo/análisis , Factor de Crecimiento Transformador beta/análisis , Células Tumorales Cultivadas , Ballenas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA