Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Carbohydr Polym ; 162: 71-81, 2017 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-28224897

RESUMEN

Plant cell walls have a unique combination of strength and flexibility however, further investigations are required to understand how those properties arise from the assembly of the relevant biopolymers. Recent studies indicate that Ca2+-pectates can act as load-bearing components in cell walls. To investigate this proposed role of pectins, bioinspired wall models were synthesised based on bacterial cellulose containing pectin-calcium gels by varying the order of assembly of cellulose/pectin networks, pectin degree of methylesterification and calcium concentration. Hydrogels in which pectin-calcium assembly occurred prior to cellulose synthesis showed evidence for direct cellulose/pectin interactions from small-angle scattering (SAXS and SANS), had the densest networks and the lowest normal stress. The strength of the pectin-calcium gel affected cellulose structure, crystallinity and material properties. The results highlight the importance of the order of assembly on the properties of cellulose composite networks and support the role of pectin in the mechanics of cell walls.


Asunto(s)
Celulosa/química , Hidrogeles/química , Pectinas/química , Pared Celular , Hidrogeles/síntesis química , Dispersión del Ángulo Pequeño , Difracción de Rayos X
2.
Carbohydr Polym ; 153: 236-245, 2016 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-27561492

RESUMEN

Pectin is a major polysaccharide in many plant cell walls and recent advances indicate that its role in wall mechanics is more important than previously thought. In this work cellulose hydrogels were synthesised in pectin solutions, as a biomimetic tool to investigate the influence of pectin on cellulose assembly and hydrogel mechanical properties. Most of the pectin (60-80%) did not interact at the molecular level with cellulose, as judged by small angle scattering techniques (SAXS and SANS). Despite the lack of strong interactions with cellulose, this pectin fraction impacted the mechanical properties of the hydrogels through poroelastic effects. The other 20-40% of pectin (containing neutral sugar sidechains) was able to interact intimately with cellulose microfibrils at the point of assembly. These results support the need to revise the role of pectin in cell wall architecture and mechanics, and; furthermore they assist the design of cellulose-based products through controlling the viscoelasticity of the fluid phase.


Asunto(s)
Materiales Biomiméticos/química , Calcio/química , Celulosa/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Pectinas/química , Estrés Mecánico , Materiales Biomiméticos/síntesis química , Pared Celular/química , Pared Celular/ultraestructura , Hidrogel de Polietilenoglicol-Dimetacrilato/síntesis química , Concentración de Iones de Hidrógeno , Células Vegetales/química , Dispersión del Ángulo Pequeño , Soluciones/química , Viscosidad , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA