Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32778545

RESUMEN

Genome changes are central to the adaptation of bacteria, especially under antibiotic pressure. The aim of this study was to report phenotypic and genomic adaptations undergone by an Enterobacter hormaechei clinical strain that became highly resistant to key antimicrobials during a 4-month period in a patient hospitalized in an intensive care unit (ICU). All six clinical E. hormaechei strains isolated in one ICU-hospitalized patient have been studied. MICs regarding 17 antimicrobial molecules have been measured. Single nucleotide polymorphisms (SNPs) were determined on the sequenced genomes. The expression of genes involved in antibiotic resistance among Enterobacter cloacae complex strains were determined by reverse transcription-quantitative PCR (qRT-PCR). All the strains belonged to sequence type 66 and were distant by a maximum of nine SNPs. After 3 months of hospitalization, three strains presented a significant increase in MICs for ceftazidime, cefepime, temocillin, ertapenem, tigecycline, ciprofloxacin, and chloramphenicol. Those resistant strains did not acquire additional antibiotic resistance genes but harbored a 16-bp deletion in the ramR gene. This deletion led to upregulated expression of RamA, AcrA, AcrB, and TolC and downregulated expression of OmpF. The ΔramR mutant harbored the same phenotype as the resistant clinical strains regarding tigecycline, chloramphenicol, and ciprofloxacin. The increased expression of RamA due to partial deletion in the ramR gene led to a cross-resistance phenotype by an increase of antibiotic efflux through the AcrAB-TolC pump and a decrease of antibiotic permeability by porin OmpF. ramR appears to be an important adaptative trait for E. hormaechei strains.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana , Enterobacter , Humanos , Pruebas de Sensibilidad Microbiana , Tigeciclina
2.
Gut ; 65(2): 278-85, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25588406

RESUMEN

OBJECTIVE: Colorectal cancers (CRCs) are frequently colonised by colibactin toxin-producing Escherichia coli bacteria that induce DNA damage in host cells and exhibit protumoural activities. Our objective was to identify small molecules inhibiting the toxic effects induced by these colibactin-producing bacteria. DESIGN: A structural approach was adopted for the identification of a putative ligand for the ClbP enzyme involved in the synthesis of colibactin. Intestinal epithelial cells and a CRC mouse model were used to assess the activity of the selected compounds in vitro and in vivo. RESULTS: Docking experiments identified two boron-based compounds with computed ligand efficiency values (-0.8 and -0.9 kcal/mol/atom) consistent with data expected for medicinal chemistry leads. The crystalline structure of ClbP in complex with the compounds confirmed that the compounds were binding to the active site of ClbP. The two compounds (2 mM) suppressed the genotoxic activity of colibactin-producing E coli both in vitro and in vivo. The mean degree of suppression of DNA damage for the most efficient compound was 98±2% (95% CI). This compound also prevented cell proliferation and colibactin-producing E coli-induced tumourigenesis in mice. In a CRC murine model colonised by colibactin-producing E coli, the number of tumours decreased by 3.5-fold in animals receiving the compound in drinking water (p<0.01). CONCLUSIONS: These results demonstrate that targeting colibactin production controls the genotoxic and protumoural effects induced by this toxin.


Asunto(s)
Ácidos Borónicos/farmacología , Neoplasias Colorrectales/prevención & control , Escherichia coli/efectos de los fármacos , Péptidos/metabolismo , Policétidos/metabolismo , Animales , Proteínas de Unión al Calcio/farmacología , Neoplasias Colorrectales/microbiología , Daño del ADN/fisiología , Escherichia coli/metabolismo , Ligandos , Ratones , Ratones Endogámicos BALB C , Mutágenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA