Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(2)2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35054917

RESUMEN

Research on layered two-dimensional (2D) materials is at the forefront of material science. Because 2D materialshave variousplate shapes, there is a great deal of research on the layer-by-layer-type junction structure. In this study, we designed a composite catalyst with a dimension lower than two dimensions and with catalysts that canbe combined so that the band structures can be designed to suit various applications and cover for each other's disadvantages. Among transition metal dichalcogenides, 1T-WS2 can be a promising catalytic material because of its unique electrical properties. Black phosphorus with properly controlled surface oxidation can act as a redox functional group. We synthesized black phosphorus that was properly surface oxidized by oxygen plasma treatment and made a catalyst for water quality improvement through composite with 1T-WS2. This photocatalytic activity was highly efficient such that the reaction rate constant k was 10.31 × 10-2 min-1. In addition, a high-concentration methylene blue solution (20 ppm) was rapidly decomposed after more than 10 cycles and showed photo stability. Designing and fabricating bandgap energy-matching nanocomposite photocatalysts could provide a fundamental direction in solving the future's clean energy problem.


Asunto(s)
Contaminantes Atmosféricos/química , Luz , Nanocompuestos/química , Fósforo/química , Contaminantes del Agua/química , Catálisis , Restauración y Remediación Ambiental , Nanocompuestos/ultraestructura , Procesos Fotoquímicos , Análisis Espectral
2.
J Nanosci Nanotechnol ; 5(2): 306-12, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15853153

RESUMEN

We report a new method to produce ordered arrays of metal nanostructures on substrates. The method employs a through-hole nanoporous alumina membrane as a mask that is attached onto the substrate, silicon in this study. The material of deposition, Au in this study, was provided by pulsed laser ablation of a target gold. At an early stage of the deposition, a significant portion of Au penetrated the alumina through-holes and formed an ordered nanodot array on the silicon surface. At the later stage, the through-hole deposition was blocked by the growth of Au film on the top surface of the alumina, so that the heights of the Au nanodots were limited to about 10 nm under current experimental conditions. Subsequent attempts to clean up the top surface of the alumina with a lower power laser illumination resulted in the formation of new nanostructures around the alumina pores, nanospheres, or nanorings, depending on the fluence of the laser and the duration of the cleanup. We will discuss the underlying mechanism of the formation of these nanostructures.


Asunto(s)
Óxido de Aluminio/química , Oro/química , Rayos Láser , Nanoestructuras/química , Nanotecnología/métodos , Ensayo de Materiales , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Nanoestructuras/ultraestructura , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA