Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
EFSA J ; 18(3): e06032, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32874250

RESUMEN

The Panel on Food Additives and Flavourings (FAF) provided a scientific opinion re-evaluating the safety of acetic acid, lactic acid, citric acid, tartaric acid, mono- and diacetyltartaric acids, mixed acetic and tartaric acid esters of mono- and diglycerides of fatty acids (E 472a-f) as food additives. All substances had been previously evaluated by the Scientific Committee for Food (SCF) and by the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Hydrolysis of E472a,b,c,e was demonstrated in various experimental systems, although the available data on absorption, distribution, metabolism, excretion (ADME) were limited. The Panel assumed that E472a-f are extensively hydrolysed in the GI tract and/or (pre-)systemically after absorption into their individual hydrolysis products which are all normal dietary constituents and are metabolised or excreted intact. No adverse effects relevant for humans have been identified from the toxicological database available for E472a-f. The Panel considered that there is no need for a numerical acceptable daily intake (ADI) for E 472a,b,c. The Panel also considered that only l(+)-tartaric acid has to be used in the manufacturing process of E472d,e,f. The Panel established ADIs for E 472d,e,f based on the group ADI of 240 mg/kg body weight (bw) per day, expressed as tartaric acid, for l(+)-tartaric acid-tartrates (E334-337, 354) and considering the total amount of l(+)-tartaric acid in each food additive. Exposure estimates were calculated for all food additives individually, except for E 472e and f, using maximum level, refined exposure and food supplements consumers only scenarios. Considering the exposure estimates, there is no safety concern at their reported uses and use levels. In addition, exposure to tartaric acid released from the use of E 472d,e,f was calculated. The Panel also proposed a number of recommendations.

2.
EFSA J ; 18(6): e06152, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32874328

RESUMEN

The Panel on Food Additives and Flavourings (FAF) provided a scientific opinion re-evaluating the safety of Sodium aluminium silicate (E 554) and potassium aluminium silicate (E 555) as food additives. The Scientific Committee for Food (SCF) assigned these food additives together with other aluminium-containing food additives a provisional tolerable weekly intake (PTWI) of 7 mg aluminium/kg body weight (bw). In 2008, EFSA established a tolerable weekly intake (TWI) of 1 mg aluminium/kg bw per week. Sodium aluminium silicate was shown in rats to be absorbed to a limited extent at 0.12 ± 0.011%. The Panel considered that potassium aluminium silicate would be absorbed and become systemically available similarly to sodium aluminium silicate. No information on the physicochemical characterisation of sodium aluminium silicate and potassium aluminium silicate when used as food additives has been submitted and only very limited toxicological data were available for sodium aluminium silicate. Exposure to E 554 was calculated based on the reported use levels in food supplements. Exposure to aluminium from this use of E 554 was calculated to exceed the TWI for aluminium. Based on the data provided by interested business operators, the Panel considered that E 555 is not being used as a carrier, but as an inseparable component of 'potassium aluminium silicate-based pearlescent pigments'. The Panel calculated the regulatory maximum exposure to E 555 as a carrier for titanium dioxide (E 171) and iron oxides and hydroxides (E 172). Exposure to aluminium from this single use at the maximum permitted level could theoretically far exceed the TWI. Considering that only very limited toxicological data and insufficient information on the physicochemical characterisation of both food additives were available, the Panel concluded that the safety of sodium aluminium silicate (E 554) and potassium aluminium silicate (E 555) could not be assessed.

3.
EFSA J ; 16(8): e05375, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32626019

RESUMEN

The EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) provides a scientific opinion re-evaluating the safety of calcium silicate (E 552), magnesium silicate (E 553a) and talc (E 553b) when used as food additives. In 1991, the Scientific Committee on Food (SCF) established a group acceptable daily intake (ADI) 'not specified' for silicon dioxide and silicates. The EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) recently provided a scientific opinion re-evaluating the safety of silicon dioxide (E 551) when used as a food additive. The Panel noted that the absorption of silicates and talc was very low; there was no indication for genotoxicity or developmental toxicity for calcium and magnesium silicate and talc; and no confirmed cases of kidney effects have been found in the EudraVigilance database despite the wide and long-term use of high doses of magnesium trisilicate up to 4 g/person per day over decades. However, the Panel considered that accumulation of silicon from calcium silicate in the kidney and liver was reported in rats, and reliable data on subchronic and chronic toxicity, carcinogenicity and reproductive toxicity of silicates and talc were lacking. Therefore, the Panel concluded that the safety of calcium silicate (E 552), magnesium silicate (E 553a(i)), magnesium trisilicate (E 553a(ii)) and talc (E 553b) when used as food additives cannot be assessed. The Panel considered that there is no mechanistic rationale for a group ADI for silicates and silicon dioxide and the group ADI established by the SCF is obsolete. Based on the food supplement scenario considered as the most representative for risk characterisation, exposure to silicates (E 552-553) for all population groups was below the maximum daily dose of magnesium trisilicate used as an antacid (4 g/person per day). The Panel noted that there were a number of approaches, which could decrease the uncertainties in the current toxicological database. These approaches include - but are not limited to - toxicological studies as recommended for a Tier 1 approach as described in the EFSA Guidance for the submission of food additives and conducted with an adequately characterised material. Some recommendations for the revision of the EU specifications were proposed by the Panel.

4.
Food Chem Toxicol ; 47(12): 2963-74, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19345717

RESUMEN

The interest in holistic considerations in the area of food safety is increasing. Risk managers may face the problem that reducing the risk of one compound may increase the risk of another compound. An example is the potential increase in mycotoxin levels due to a reduced use of fungicides in crop production. The Integrated Probabilistic Risk Assessment (IPRA) model was used to compare the estimated health impacts on humans caused by crops contaminated with the fungicides spiroxamine (SPI) and tebuconazole (TEB) or with the mycotoxins deoxynivalenol (DON) and zearalenone (ZEA). The IPRA model integrates a distribution characterising the exposure of individuals with a distribution characterising the susceptibility of individuals towards toxic effects. Its outcome, a distribution of Individual Margins of Exposure (IMoE), served as basis to perform comparisons of compounds, effects, countries, and population groups. Based on the available data and the assumptions made, none of the four compounds was found to have impact on human health in the addressed scenarios. The IMoE distributions were located as follows: DON

Asunto(s)
Microbiología de Alimentos , Fungicidas Industriales/envenenamiento , Modelos Estadísticos , Micotoxinas/envenenamiento , Medición de Riesgo/métodos , Conducta de Reducción del Riesgo , Humanos , Compuestos de Espiro/envenenamiento , Triazoles/envenenamiento , Tricotecenos/envenenamiento , Zearalenona/envenenamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA