Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 12(3)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36979015

RESUMEN

Donor organ-shortage has resulted in the increased use of marginal grafts; however, normothermic machine perfusion (NMP) holds the potential for organ viability assessment and restoration of marginal grafts prior to transplantation. Additionally, cell-, oxygen carrier-free and antioxidants-supplemented solutions could potentially prevent adverse effects (transfusion reactions, inflammation, hemolysis), associated with the use of autologous packed red blood cell (pRBC)-based perfusates. This study compared 6 h NMP of porcine kidneys, using an established pRBC-based perfusate (pRBC, n = 7), with the novel cell- and oxygen carrier-free organ preservation solution Ecosol, containing taurine (Ecosol, n = 7). Despite the enhanced tissue edema and tubular injury in the Ecosol group, related to a suboptimal molecular mass of polyethylene glycol as colloid present in the solution, functional parameters (renal blood flow, intrarenal resistance, urinary flow, pH) and oxygenation (arterial pO2, absence of hypoxia-inducible factor 1-alpha) were similar to the pRBC group. Furthermore, taurine significantly improved the antioxidant capacity in the Ecosol group, reflected in decreased lactate dehydrogenase, urine protein and tubular vacuolization compared to pRBC. This study demonstrates the feasibility of 6 h NMP using a taurine containing, cell- and oxygen carrier-free perfusate, achieving a comparable organ quality to pRBC perfused porcine kidneys.

2.
Redox Biol ; 56: 102459, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36099852

RESUMEN

AIMS: Patients with chronic kidney disease (CKD) have an increased risk of cardiovascular events and exhibit myocardial changes including left ventricular (LV) hypertrophy and fibrosis, overall referred to as 'uremic cardiomyopathy'. Although different CKD animal models have been studied for cardiac effects, lack of consistent reporting on cardiac function and pathology complicates clear comparison of these models. Therefore, this study aimed at a systematic and comprehensive comparison of cardiac function and cardiac pathophysiological characteristics in eight different CKD models and mouse strains, with a main focus on adenine-induced CKD. METHODS AND RESULTS: CKD of different severity and duration was induced by subtotal nephrectomy or adenine-rich diet in various strains (C57BL/6J, C57BL/6 N, hyperlipidemic C57BL/6J ApoE-/-, 129/Sv), followed by the analysis of kidney function and morphology, blood pressure, cardiac function, cardiac hypertrophy, fibrosis, myocardial calcification and inflammation using functional, histological and molecular techniques, including cardiac gene expression profiling supplemented by oxidative stress analysis. Intriguingly, despite uremia of variable degree, neither cardiac dysfunction, hypertrophy nor interstitial fibrosis were observed. However, already moderate CKD altered cardiac oxidative stress responses and enhanced oxidative stress markers in each mouse strain, with cardiac RNA sequencing revealing activation of oxidative stress signaling as well as anti-inflammatory feedback responses. CONCLUSION: This study considerably expands the knowledge on strain- and protocol-specific differences in the field of cardiorenal research and reveals that several weeks of at least moderate experimental CKD increase oxidative stress responses in the heart in a broad spectrum of mouse models. However, this was insufficient to induce relevant systolic or diastolic dysfunction, suggesting that additional "hits" are required to induce uremic cardiomyopathy. TRANSLATIONAL PERSPECTIVE: Patients with chronic kidney disease (CKD) have an increased risk of cardiovascular adverse events and exhibit myocardial changes, overall referred to as 'uremic cardiomyopathy'. We revealed that CKD increases cardiac oxidative stress responses in the heart. Nonetheless, several weeks of at least moderate experimental CKD do not necessarily trigger cardiac dysfunction and remodeling, suggesting that additional "hits" are required to induce uremic cardiomyopathy in the clinical setting. Whether the altered cardiac oxidative stress balance in CKD may increase the risk and extent of cardiovascular damage upon additional cardiovascular risk factors and/or events will be addressed in future studies.


Asunto(s)
Cardiomiopatías , Insuficiencia Renal Crónica , Adenina , Animales , Antiinflamatorios , Apolipoproteínas E , Modelos Animales de Enfermedad , Fibrosis , Hipertrofia Ventricular Izquierda , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Insuficiencia Renal Crónica/etiología , Insuficiencia Renal Crónica/metabolismo
3.
Kidney Int ; 101(2): 338-348, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34774554

RESUMEN

Chronic kidney disease (CKD) is accompanied with extensive cardiovascular calcification, in part correlating with functional vitamin K deficiency. Here, we sought to determine causes for vitamin K deficiency beyond reduced dietary intake. Initially, vitamin K uptake and distribution into circulating lipoproteins after a single administration of vitamin K1 plus K2 (menaquinone 4 and menaquinone 7, respectively) was determined in patients on dialysis therapy and healthy individuals. The patients incorporated very little menaquinone 7 but more menaquinone 4 into high density lipoprotein (HDL) and low-density lipoprotein particles than did healthy individuals. In contrast to healthy persons, HDL particles from the patients could not be spiked with menaquinone 7 in vitro and HDL uptake was diminished in osteoblasts. A reduced carboxylation activity (low vitamin K activity) of uremic HDL particles spiked with menaquinone 7 vs. that of controls was confirmed in a bioassay using human primary vascular smooth muscle cells. Kidney menaquinone 4 tissue levels were reduced in 5/6-nephrectomized versus sham-operated C57BL/6 mice after four weeks of a vitamin K rich diet. From the analyzed enzymes involved in vitamin K metabolism, kidney HMG-CoA reductase protein was reduced in both rats and patients with CKD. In a trial on the efficacy and safety of atorvastatin in 1051 patients with type 2 diabetes receiving dialysis therapy, no pronounced vitamin K deficiency was noted. However, the highest levels of PIVKA-II (biomarker of subclinical vitamin K deficiency) were noted when a statin was combined with a proton pump inhibitor. Thus, profound disturbances in lipoprotein mediated vitamin K transport and metabolism in uremia suggest that menaquinone 7 supplementation to patients on dialysis therapy has reduced efficacy.


Asunto(s)
Insuficiencia Renal Crónica , Deficiencia de Vitamina K , Vitamina K/metabolismo , Animales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratas , Insuficiencia Renal Crónica/metabolismo , Distribución Tisular , Vitamina K/uso terapéutico , Vitamina K 1/metabolismo , Vitamina K 1/uso terapéutico , Vitamina K 2/metabolismo , Vitamina K 2/uso terapéutico , Deficiencia de Vitamina K/complicaciones , Deficiencia de Vitamina K/metabolismo
4.
Nutrients ; 11(8)2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31374900

RESUMEN

Systemic and localized ischemia and reperfusion injury remain clinically relevant issues after organ transplantation and contribute to organ dysfunctions, among which acute kidney injury is one of the most common. An in vitro test-circuit for normothermic perfusion of porcine kidneys after warm ischemia was used to investigate the antioxidant properties of vitamin C during reperfusion. Vitamin C is known to enhance microcirculation, reduce endothelial permeability, prevent apoptosis, and reduce inflammatory reactions. Based on current evidence about the pleiotropic effects of vitamin C, we hypothesize that the antioxidant properties of vitamin C might provide organ-protection and improve the kidney graft function in this model of ischemia and reperfusion. METHODS: 10 porcine kidneys from 5 Landrace pigs were perfused in vitro for 6 h. For each experiment, both kidneys of one animal were perfused simultaneously with a 1:1 mixture of autologous blood and modified Ringer's solution at 38 °C and 75 mmHg continuous perfusion pressure. One kidney was treated with a 500 mg bolus injection of vitamin C into the perfusate, followed by continuous infusion of 60 mg/h vitamin C. In the control test circuit, an equal volume of Ringer's solution was administered as a placebo. Perfusate samples were withdrawn at distinct points in time during 6 h of perfusion for blood gas analyses as well as measurement of serum chemistry, oxidative stress and antioxidant capacity. Hemodynamic parameters and urine excretion were monitored continuously. Histological samples were analyzed to detect tubular- and glomerular-injury. RESULTS: vitamin C administration to the perfusate significantly reduced oxidative stress (49.8 ± 16.2 vs. 118.6 ± 23.1 mV; p = 0.002) after 6 h perfusion, and increased the antioxidant capacity, leading to red blood cell protection and increased hemoglobin concentrations (5.1 ± 0.2 vs. 3.9 ± 0.6 g/dL; p = 0.02) in contrast to placebo treatment. Kidney function was not different between the groups (creatinine clearance vit C: 2.5 ± 2.1 vs. placebo: 0.5 ± 0.2 mL/min/100 g; p = 0.9). Hypernatremia (187.8 ± 4.7 vs. 176.4 ± 5.7 mmol/L; p = 0.03), and a lower, but not significant decreased fractional sodium excretion (7.9 ± 2 vs. 27.7 ± 15.3%; p = 0.2) were observed in the vitamin C group. Histological analysis did not show differences in tubular- and glomerular injury between the groups. CONCLUSION: Vitamin C treatment increased the antioxidant capacity of in vitro perfused kidney grafts, reduced oxidative stress, preserved red blood cells as oxygen carrier in the perfusate, but did not improve clinically relevant parameters like kidney function or attenuate kidney damage. Nevertheless, due to its antioxidative properties vitamin C might be a beneficial supplement to clinical kidney graft perfusion protocols.


Asunto(s)
Antioxidantes/farmacología , Ácido Ascórbico/farmacología , Riñón/efectos de los fármacos , Preservación de Órganos , Estrés Oxidativo/efectos de los fármacos , Perfusión , Daño por Reperfusión/prevención & control , Animales , Citocinas/metabolismo , Femenino , Hemoglobinas/metabolismo , Técnicas In Vitro , Riñón/metabolismo , Riñón/patología , Preservación de Órganos/efectos adversos , Perfusión/efectos adversos , Daño por Reperfusión/etiología , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Sus scrofa
5.
Physiol Behav ; 105(3): 693-701, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22019827

RESUMEN

Maillard reaction products (MRPs) are generated upon thermal processing of foods, modifying their colour and flavour. We asked whether aroma compounds generated via Maillard-type reactions modulate the in vivo effects of MRP-rich diets (MRPD). Male Wistar rats were fed for 3weeks either with a standard rat chow, an aroma compounds containing MRPD comprising 25% bread crust, or an aroma-extracted MRPD. In contrast to standard rat chow, consumption of MRPDs affected glucose control, induced hyper-leptinemia and hyper-adiponectinemia. Plasma adipokines were significantly higher in rats on aroma containing MRPD in comparison with those consuming aroma-extracted MRPD. Consumption of both MRPDs significantly increased the expression of the insulin receptor in the olfactory bulb, and mildly in the hypothalamus. Administration of the aroma containing MRPD significantly increased the leptin receptor expression in the olfactory bulb, and in the hypothalamus. Under both MRPDs, strong expression of c-fos indicated an increased neuronal activity in the olfactory bulb. Neuronal activity in brain areas involved in the central regulation of food intake and energy homeostasis was more pronounced in rats fed by the aroma containing MRPD. In conclusion, short-term consumption of a MRPD fortified with bread crust, particularly if containing solvent extractable volatile aroma compounds, affected the leptin-induced central signalling of anorexigenic/orexigenic hormones, and the neuronal activity in the central nervous system. Behavioural changes and altered glucose control were more evident in rats on the aroma containing MRPD. Our data suggest that volatile aroma compounds in foods might affect endocrine signalling and neuronal regulation of metabolism.


Asunto(s)
Alimentación Animal , Conducta Animal/fisiología , Dieta , Hormonas/metabolismo , Reacción de Maillard , Adiponectina/metabolismo , Animales , Glucemia , Adaptación a la Oscuridad , Ingestión de Alimentos/fisiología , Metabolismo Energético/fisiología , Conducta Exploratoria/fisiología , Regulación de la Expresión Génica , Prueba de Tolerancia a la Glucosa , Hipotálamo/metabolismo , Lisina/análogos & derivados , Lisina/sangre , Masculino , Bulbo Olfatorio/metabolismo , Proteínas Oncogénicas v-fos/metabolismo , Desempeño Psicomotor , Ratas , Ratas Wistar , Receptores de Leptina/metabolismo
6.
Kidney Int ; 80(11): 1182-97, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21814170

RESUMEN

Recent studies have shown renoprotective effects of the peroxisome proliferator-activated receptor-α (PPAR-α), but its role in kidney fibrosis is unknown. In order to gain insight into this, we examined the effect of a novel PPAR-α agonist, BAY PP1, in two rat models of renal fibrosis: unilateral ureteral obstruction and the 5/6 nephrectomy. In healthy animals, PPAR-α was expressed in tubular but not in interstitial cells. Upon induction of fibrosis, PPAR-α was significantly downregulated, and treatment with BAY PP1 significantly restored its expression. During ureteral obstruction, treatment with BAY PP1 significantly reduced tubulointerstitial fibrosis, proliferation of interstitial fibroblasts, and TGF-ß(1) expression. Treatment with a less potent PPAR-α agonist, fenofibrate, had no effects. Treatment with BAY PP1, initiated in established disease in the 5/6 nephrectomy, halted the decline of renal function and significantly ameliorated renal fibrosis. In vitro, BAY PP1 had no direct effect on renal fibroblasts but reduced collagen, fibronectin, and TGF-ß(1) expression in tubular cells. Conditioned media of BAY PP1-treated tubular cells reduced fibroblast proliferation. Thus, renal fibrosis is characterized by a reduction of PPAR-α expression, and treatment with BAY PP1 restores PPAR-α expression and ameliorates renal fibrosis by modulating the cross-talk between tubular cells and fibroblasts. Hence, potent PPAR-α agonists might be useful in the treatment of renal fibrosis.


Asunto(s)
Ácido 3-Mercaptopropiónico/análogos & derivados , Fibrosis/prevención & control , Enfermedades Renales/tratamiento farmacológico , Receptores Activados del Proliferador del Peroxisoma/agonistas , Pirimidinas/uso terapéutico , Ácido 3-Mercaptopropiónico/farmacología , Ácido 3-Mercaptopropiónico/uso terapéutico , Animales , Proliferación Celular/efectos de los fármacos , Fibrosis/tratamiento farmacológico , Enfermedades Renales/patología , Túbulos Renales/patología , Nefrectomía , Sustancias Protectoras , Pirimidinas/farmacología , Ratas , Resultado del Tratamiento , Obstrucción Ureteral/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA