Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
mSystems ; 6(5): e0085621, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34665011

RESUMEN

Dairy cows respond individually to stressful situations, even under similar feeding and housing conditions. The phenotypic responsiveness might trace back to their microbiome and its interactions with the host. This long-term study investigated the effects of calving, lipopolysaccharide (LPS)-induced inflammation, and l-carnitine supplementation on fecal bacteria and metabolites, dairy cow milk production, health, energy metabolism, and blood metabolites. Fifty-four multiparous Holstein dairy cows were examined over a defined period of life (168 days). The obtained data allowed a holistic analysis combining microbiome data such as 16S rRNA amplicon sequencing and fecal targeted metabolome (188 metabolites) with host parameters. The conducted analyses allowed the definition of three enterotype-like microbiome clusters in dairy cows which could be linked to the community diversity and dynamics over time. The microbiome clusters were discovered to be treatment independent, governed by Bifidobacterium (C-Bifi), unclassified (uncl.) Clostridiales (C-Clos), and unclassified Spirochaetaceae (C-Spiro). Animals between the clusters varied significantly in terms of illnesses, body weight, microbiome composition, and milk and blood parameters. C-Bifi animals were healthier and leaner with a less diverse but dynamic microbiome. C-Spiro animals were heavier, but the diversity of the static microbiome was higher. This pioneering study uncovered microbiome clusters in dairy cows, each contributing differently to animal health and productive performance and with a crucial role of Bifidobacterium. IMPORTANCE The health of dairy cows has to be carefully considered for sustainable and efficient animal production. The microbiome of animals plays an important role in the host's nutrient supply and regulation of immune functions. We show that a certain composition of the fecal microbiome, called microbiome clusters, can be linked to an animal's health at challenging life events such as calving and inflammation. Cows with a specific set of bacteria have coped better under these stressors than have others. This novel information has great potential for implementing microbiome clusters as a trait for sustainable breeding strategies.

2.
Curr Dev Nutr ; 5(8): nzab103, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34447898

RESUMEN

BACKGROUND: Responses to dietary calcium (Ca) and supplemented phytase on prececal amino acid digestibility (pcAAD) in broiler chickens vary among studies. The variation may arise from the dietary acid-binding capacity (ABC) that influences the activity of enzymes in the digestive tract and from microbial activity. OBJECTIVE: This study aimed to investigate whether the ABC influences phytase effects on pcAAD and whether microbial activity contributes to this. METHODS: Male Ross 308 broiler chickens were provided 1 of 12 diets in 72 pens (15/pen) from day 16 of age until the end of the experiment on days 21 or 22. In a 3 × 2 × 2-factorial arrangement, the ABC was varied by replacing calcium carbonate (CaCO3) with Ca-formate or by adding formic acid to CaCO3-containing diets, and contained 5.6 or 8.2 g Ca/kg and 0 or 1500 phytase units/kg. The ileum content was collected for pcAAD measurement and microbial community composition was used to investigate whether changes in pcAAD are related to the microbiota. RESULTS: Three-factor ANOVA showed that reducing the ABC increased pcAAD (average 1.1 percentage points) and no significant interaction of the ABC with Ca concentration and phytase supplementation including 3-way interactions. Without phytase, increasing dietary Ca concentration decreased pcAAD (average 3.1 percentage points). Phytase supplementation increased pcAAD (average 2.1 and 5.0 percentage points at low and high Ca concentrations, respectively), to reach the same level for both Ca concentrations. Microbial functional predictions pointed towards an influence of the microbiota in the crop and ileum content on amino acid concentrations, as indicated by different relative abundances of predicted genes related to amino acid biosynthesis, degradation, and metabolism. CONCLUSIONS: Dietary Ca concentrations but not the ABC modulates the effect of supplemented phytase on pcAAD in broiler chickens. The microbiota might contribute to differences in pcAAD by changing the amino acid composition of the digesta. The extent of this effect is still unknown.

3.
Poult Sci ; 100(6): 101133, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33940282

RESUMEN

The objective of this study was to compare the effects of graded inclusions of 2 phytase products and a mineral P source in broiler chickens using different response traits, including ileum microbiota composition. Eleven experimental diets were used. These were a low-P basal diet and diets supplemented with increasing levels of dicalcium phosphate (DCP), Natuphos E 5000 G (NE), or Natuphos 5000 G (N). The performance traits, prececal P digestibility, and tibia and foot ash results were subjected to regression analysis and slope ratios were used to compare the supplements based on the measured evaluation traits. In the microbiota analysis, total nucleic acids were extracted and the 16S rRNA gene was targeted for use in the amplicon sequencing process. Phylogenetic analysis was performed using Mothur, followed by a multivariate statistical analysis. The various response traits caused different estimates of relative efficacy. The mean results of all the response traits showed that a 1.75-fold increase in the activity of N was needed to achieve the same response as NE and the variability among the detected traits ranged from 1.59 (prececally digestible P intake) to 1.91 (amount of tibia ash). The mean slope ratio between DCP and NE was 311 and varied between 208 (ADG) and 349 (foot ash concentration). The mean slope ratio for phytase N with DCP was 552 and varied from 357 (ADG) to 640 (tibia ash concentration). The ileum microbiota composition was not different among the diets. A similar composition was driven in the abundance of Lactobacillus crispatus, Lactobacillus salivarius, and Lactobacillus gallinarum. The results suggest that different response traits cause markedly different estimates of relative phytase efficacy.


Asunto(s)
6-Fitasa , Microbiota , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Pollos , Dieta/veterinaria , Suplementos Dietéticos/análisis , Digestión , Íleon , Lactobacillus , Filogenia , ARN Ribosómico 16S/genética
4.
Anim Microbiome ; 3(1): 23, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33722307

RESUMEN

BACKGROUND: Diet acidification, dietary calcium (Ca) level, and phytase supplementation are known influences on the microbial community in the digestive tract and on phosphorus (P) utilization of broiler chickens. Effects of dietary factors and microbiota on P utilization may be linked because microorganisms produce enzymes that release P from phytate (InsP6), the main source of P in plant feedstuffs. This study aimed to detect linkages between microbiota and InsP6 degradation by acidifying diets (i.e., replacing Ca carbonate (CaCO3) by Ca formate or adding formic acid to CaCO3-containing diets), varying Ca levels, and supplementing phytase in a three-factorial design. We investigated i) the microbial community and pH in the digestive tract, ii) prececal (pc) P and Ca digestibility, and iii) InsP6 degradation. RESULTS: All factors under investigation influenced digesta pH and the microbiota composition. Predicted functionality and relative abundance of microorganisms indicated that diets influenced the potential contribution of the microbiota on InsP degradation. Values of InsP6 degradation and relative abundance of the strains Lactobacillus johnsonii and Lactobacillus reuteri were correlated. Phytase supplementation increased pc InsP6 disappearance, with differences between Ca levels, and influenced concentrations of lower inositol phosphate isomers in the digestive tract. Formic acid supplementation increased pc InsP6 degradation to myo-inositol. Replacing CaCO3 by Ca-formate and the high level of these Ca sources reduced pc InsP6 disappearance, except when the combination of CaCO3 + formic acid was used. Supplementing phytase to CaCO3 + formic acid led to the highest InsP6 disappearance (52%) in the crop and increased myo-inositol concentration in the ileum digesta. Supplementing phytase leveled the effect of high Ca content on pc InsP6 disappearance. CONCLUSIONS: The results point towards a contribution of changing microbial community on InsP6 degradation in the crop and up to the terminal ileum. This is indicated by relationships between InsP6 degradation and relative abundance of phosphatase-producing strains. Functional predictions supported influences of microbiota on InsP6 degradation. The extent of such effects remains to be clarified. InsP6 degradation may also be influenced by variation of pH caused by dietary concentration and solubility of the Ca in the feed.

5.
Microorganisms ; 7(5)2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-31064055

RESUMEN

Diet has an essential influence in the establishment of the cecum microbial communities in poultry, so its supplementation with safe additives, such as probiotics, prebiotics, and synbiotics might improve animal health and performance. This study showed the ceca microbiome modulations of laying hens, after feeding with dry whey powder as prebiotics, Pediococcus acidilactici as probiotics, and the combination of both as synbiotics. A clear grouping of the samples induced per diet was observed (p < 0.05). Operational taxonomic units (OTUs) identified as Olsenella spp., and Lactobacillus crispatus increased their abundance in prebiotic and synbiotic treatments. A core of the main functions was shared between all metagenomes (45.5%), although the genes encoding for the metabolism of butanoate, propanoate, inositol phosphate, and galactose were more abundant in the prebiotic diet. The results indicated that dietary induced-changes in microbial composition did not imply a disturbance in the principal biological roles, while the specific functions were affected.

6.
Anim Microbiome ; 1(1): 5, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-33499963

RESUMEN

BACKGROUND: There is good evidence for a substantial endogenous phytase activity originating from the epithelial tissue or the microbiota resident in the digestive tract of broiler chickens. However, ionophore coccidiostats, which are frequently used as feed additives in broiler diets to prevent coccidiosis, might affect the bacterial composition and the abundance of phytase producers in the gastrointestinal tract. The aim of the present study was to investigate whether supplementation of a frequently used mixture of the coccidiostats Narasin and Nicarbazin alone or together with a phytase affects microbiota composition of the digestive tract of broiler chickens, characteristics of phytate breakdown in crop and terminal ileum, and precaecal phosphorus and crude protein digestibility. RESULTS: Large differences in the microbial composition and diversity were detected between the treatments with and without coccidiostat supplementation. Disappearance of myo-inositol 1,2,3,4,5,6-hexakis(dihydrogen phosphate) (InsP6) in the digestive tract, precaecal P digestibility, inorganic P in blood serum, and the concentration of inositol phosphate isomers in the crop and ileum digesta were significantly affected by phytase supplementation, but not by coccidiostat supplementation. Crude protein digestibility was increased by coccidiostat supplementation when more phosphate was available. Neither microbial abundance and diversity nor any other trait measured at the end of the experiment was affected by coccidiostat when it was only supplemented from day 1 to 10 of age. CONCLUSIONS: The coccidiostats used herein had large effects on overall microbiota composition of the digestive tract. The coccidiostats did not seem to affect endogenous or exogenous phytase activity up to the terminal ileum of broiler chickens. The effects of phytase on growth, phosphorus digestibility, and myo-inositol release were not altered by the presence of the coccidiostats. The effects of phytase and coccidiostats on nutrient digestibility can be of significant relevance for phosphorus and protein-reduced feeding concepts if confirmed in further experiments.

7.
Front Microbiol ; 7: 2033, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28066358

RESUMEN

Phytase supplementation in broiler diets is a common practice to improve phosphorus (P) availability and to reduce P loss by excretion. An enhanced P availability, and its concomitant supplementation with calcium (Ca), can affect the structure of the microbial community in the digestive tract of broiler chickens. Here, we aim to distinguish the effects of mineral P, Ca, and phytase on the composition of microbial communities present in the content and the mucosa layer of the gastrointestinal tract (GIT) of broiler chickens. Significant differences were observed between digesta and mucosa samples for the GIT sections studied (p = 0.001). The analyses of 56 individual birds showed a high microbial composition variability within the replicates of the same diet. The average similarity within replicates of digesta and mucosa samples across all diets ranged from 29 to 82% in crop, 19-49% in ileum, and 17-39% in caeca. Broilers fed with a diet only supplemented with Ca had the lowest body weight gain and feed conversion values while diets supplemented with P showed the best performance results. An effect of each diet on crop mucosa samples was observed, however, similar results were not obtained from digesta samples. Microbial communities colonizing the ileum mucosa samples were affected by P supplementation. Caeca-derived samples showed the highest microbial diversity when compared to the other GIT sections and the most prominent phylotypes were related to genus Faecalibacterium and Pseudoflavonifractor, known for their influence on gut health and as butyrate producers. Lower microbial diversity in crop digesta was linked to lower growth performance of birds fed with a diet only supplemented with Ca. Each diet affected microbial communities within individual sections, however, no diet showed a comprehensive effect across all GIT sections, which can primarily be attributed to the great variability among replicates. The substantial community differences between digesta and mucosa derived samples indicate that both habitats have to be considered when the influence of diet on the gut microbiota, broiler growth performance, and animal health is investigated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA