Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neuron ; 110(17): 2836-2853.e8, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-35803270

RESUMEN

The thalamus controls transmission of sensory signals from periphery to cortex, ultimately shaping perception. Despite this significant role, dynamic thalamic gating and the consequences for downstream cortical sensory representations have not been well studied in the awake brain. We optogenetically modulated the ventro-posterior-medial thalamus in the vibrissa pathway of the awake mouse and measured spiking activity in the thalamus and activity in primary somatosensory cortex (S1) using extracellular electrophysiology and genetically encoded voltage imaging. Thalamic hyperpolarization significantly enhanced thalamic sensory-evoked bursting; however, surprisingly, the S1 cortical response was not amplified, but instead, timing precision was significantly increased, spatial activation more focused, and there was an increased synchronization of cortical inhibitory neurons. A thalamocortical network model implicates the modulation of precise timing of feedforward thalamic population spiking, presenting a highly sensitive, timing-based gating of sensory signaling to the cortex.


Asunto(s)
Corteza Somatosensorial , Vigilia , Animales , Ratones , Neuronas/fisiología , Transducción de Señal , Corteza Somatosensorial/fisiología , Tálamo/fisiología
2.
J Neurosci ; 41(25): 5421-5439, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-33986072

RESUMEN

Rapid sensory adaptation is observed across all sensory systems, and strongly shapes sensory percepts in complex sensory environments. Yet despite its ubiquity and likely necessity for survival, the mechanistic basis is poorly understood. A wide range of primarily in vitro and anesthetized studies have demonstrated the emergence of adaptation at the level of primary sensory cortex, with only modest signatures in earlier stages of processing. The nature of rapid adaptation and how it shapes sensory representations during wakefulness, and thus the potential role in perceptual adaptation, is underexplored, as are the mechanisms that underlie this phenomenon. To address these knowledge gaps, we recorded spiking activity in primary somatosensory cortex (S1) and the upstream ventral posteromedial (VPm) thalamic nucleus in the vibrissa pathway of awake male and female mice, and quantified responses to whisker stimuli delivered in isolation and embedded in an adapting sensory background. We found that cortical sensory responses were indeed adapted by persistent sensory stimulation; putative excitatory neurons were profoundly adapted, and inhibitory neurons only modestly so. Further optogenetic manipulation experiments and network modeling suggest this largely reflects adaptive changes in synchronous thalamic firing combined with robust engagement of feedforward inhibition, with little contribution from synaptic depression. Taken together, these results suggest that cortical adaptation in the regime explored here results from changes in the timing of thalamic input, and the way in which this differentially impacts cortical excitation and feedforward inhibition, pointing to a prominent role of thalamic gating in rapid adaptation of primary sensory cortex.SIGNIFICANCE STATEMENT Rapid adaptation of sensory activity strongly shapes representations of sensory inputs across all sensory pathways over the timescale of seconds, and has profound effects on sensory perception. Despite its ubiquity and theoretical role in the efficient encoding of complex sensory environments, the mechanistic basis is poorly understood, particularly during wakefulness. In this study in the vibrissa pathway of awake mice, we show that cortical representations of sensory inputs are strongly shaped by rapid adaptation, and that this is mediated primarily by adaptive gating of the thalamic inputs to primary sensory cortex and the differential way in which these inputs engage cortical subpopulations of neurons.


Asunto(s)
Adaptación Fisiológica/fisiología , Corteza Somatosensorial/fisiología , Tálamo/fisiología , Vigilia/fisiología , Animales , Femenino , Masculino , Ratones , Vibrisas/fisiología
3.
Neuroscience ; 423: 55-65, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31705892

RESUMEN

Models of basal ganglia (BG) function predict that tonic inhibitory output to motor thalamus (MT) suppresses unwanted movements, and that a decrease in such activity leads to action selection. Further, for unilateral activity changes in the BG, a lateralized effect on contralateral movements can be expected due to ipsilateral thalamocortical connectivity. However, a direct test of these outcomes of thalamic inhibition has not been performed. To conduct such a direct test, we utilized rapid optogenetic activation and inactivation of the GABAergic output of the substantia nigra pars reticulata (SNr) to MT in male and female mice that were trained in a sensory cued left/right licking task. Directional licking tasks have previously been shown to depend on a thalamocortical feedback loop between ventromedial MT and antero-lateral premotor cortex. In confirmation of model predictions, we found that unilateral optogenetic inhibition of GABAergic output from the SNr, during ipsilaterally cued trials, biased decision making towards a contralateral lick without affecting motor performance. In contrast, optogenetic excitation of SNr terminals in MT resulted in an opposite bias towards the ipsilateral direction confirming a bidirectional effect of tonic nigral output on directional decision making. However, direct optogenetic excitation of neurons in the SNr resulted in bilateral movement suppression, which is in agreement with previous results that show such suppression for nigral terminals in the superior colliculus (SC), which receives a bilateral projection from SNr.


Asunto(s)
Ganglios Basales/fisiología , Toma de Decisiones/fisiología , Movimiento/fisiología , Inhibición Neural/fisiología , Sustancia Negra/fisiología , Animales , Anticipación Psicológica/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Dependovirus/genética , Femenino , Lateralidad Funcional/fisiología , Masculino , Ratones , Corteza Motora/fisiología , Vías Nerviosas/fisiología , Optogenética , Sustancia Negra/efectos de los fármacos , Tálamo/fisiología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA