RESUMEN
Hydraulic fracturing (HF), a method to enhance oil and gas production, has become increasingly common throughout the U.S. As such, it is important to characterize the chemicals found in HF fluids to evaluate potential environmental fate, including fate in treatment systems, and human health impacts. Eighty-one common HF chemical additives were identified and categorized according to their functions. Physical and chemical characteristics of these additives were determined using publicly available chemical information databases. Fifty-five of the compounds are organic and twenty-seven of these are considered readily or inherently biodegradable. Seventeen chemicals have high theoretical chemical oxygen demand and are used in concentrations that present potential treatment challenges. Most of the HF chemicals evaluated are non-toxic or of low toxicity and only three are classified as Category 2 oral toxins according to standards in the Globally Harmonized System of Classification and Labeling of Chemicals; however, toxicity information was not located for thirty of the HF chemicals evaluated. Volatilization is not expected to be a significant exposure pathway for most HF chemicals. Gaps in toxicity and other chemical properties suggest deficiencies in the current state of knowledge, highlighting the need for further assessment to understand potential issues associated with HF chemicals in the environment.
Asunto(s)
Contaminantes Ambientales , Industria Procesadora y de Extracción , Gas Natural , Petróleo , Animales , Contaminantes Ambientales/química , Contaminantes Ambientales/toxicidad , Humanos , Medición de RiesgoRESUMEN
Global climate models project a decrease in the magnitude of precipitation in tropical regions. Changes in rainfall patterns have important implications for the moisture content and redox status of tropical soils, yet little is known about how these changes may affect microbial community structure. Specifically, does exposure to prior stress confer increased resistance to subsequent perturbation? Here we reduced the quantity of precipitation throughfall to tropical forest soils in the Luquillo Mountains, Puerto Rico. Treatments included newly established throughfall exclusion plots (de novo excluded), plots undergoing reduction for a second time (pre-excluded) and ambient control plots. Ten months of throughfall exclusion led to a small but statistically significant decline in soil water potential and bacterial populations clearly adapted to increased osmotic stress. Although the water potential decline was small and microbial biomass did not change, phylogenetic diversity in the de novo-excluded plots decreased by â¼40% compared with the control plots, yet pre-excluded plots showed no significant change. On the other hand, the relative abundances of bacterial taxa in both the de novo-excluded and pre-excluded plots changed significantly with throughfall exclusion compared with control plots. Changes in bacterial community structure could be explained by changes in soil pore water chemistry and suggested changes in soil redox. Soluble iron declined in treatment plots and was correlated with decreased soluble phosphorus concentrations, which may have significant implications for microbial productivity in these P-limited systems.
Asunto(s)
Sequías , Lluvia , Microbiología del Suelo , Árboles/microbiología , Clima Tropical , Bacterias , Biomasa , Fósforo/química , Filogenia , Puerto Rico , Suelo/análisis , Agua/químicaRESUMEN
The Deepwater Horizon oil spill resulted in a massive influx of hydrocarbons into the Gulf of Mexico (the Gulf). To better understand the fate of the oil, we enriched and isolated indigenous hydrocarbon-degrading bacteria from deep, uncontaminated waters from the Gulf with oil (Macondo MC252) and dispersant used during the spill (COREXIT 9500). During 20 days of incubation at 5°C, CO(2) evolution, hydrocarbon concentrations and the microbial community composition were determined. Approximately 60% to 25% of the dissolved oil with or without COREXIT, respectively, was degraded, in addition to some hydrocarbons in the COREXIT. FeCl(2) addition initially increased respiration rates, but not the total amount of hydrocarbons degraded. 16S rRNA gene sequencing revealed a succession in the microbial community over time, with an increase in abundance of Colwellia and Oceanospirillales during the incubations. Flocs formed during incubations with oil and/or COREXIT in the absence of FeCl(2) . Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy revealed that the flocs were comprised of oil, carbohydrates and biomass. Colwellia were the dominant bacteria in the flocs. Colwellia sp. strain RC25 was isolated from one of the enrichments and confirmed to rapidly degrade high amounts (approximately 75%) of the MC252 oil at 5°C. Together these data highlight several features that provide Colwellia with the capacity to degrade oil in cold, deep marine habitats, including aggregation together with oil droplets into flocs and hydrocarbon degradation ability.
Asunto(s)
Lípidos , Contaminación por Petróleo , Petróleo/metabolismo , Microbiología del Agua , Alteromonadaceae/genética , Alteromonadaceae/aislamiento & purificación , Alteromonadaceae/metabolismo , Alteromonadaceae/ultraestructura , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Carga Bacteriana , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Guerra del Golfo , ARN Ribosómico 16S/genéticaRESUMEN
The biological effects and expected fate of the vast amount of oil in the Gulf of Mexico from the Deepwater Horizon blowout are unknown owing to the depth and magnitude of this event. Here, we report that the dispersed hydrocarbon plume stimulated deep-sea indigenous γ-Proteobacteria that are closely related to known petroleum degraders. Hydrocarbon-degrading genes coincided with the concentration of various oil contaminants. Changes in hydrocarbon composition with distance from the source and incubation experiments with environmental isolates demonstrated faster-than-expected hydrocarbon biodegradation rates at 5°C. Based on these results, the potential exists for intrinsic bioremediation of the oil plume in the deep-water column without substantial oxygen drawdown.
Asunto(s)
Biodegradación Ambiental , Contaminación Ambiental , Gammaproteobacteria/metabolismo , Hidrocarburos/metabolismo , Oceanospirillaceae/metabolismo , Petróleo/metabolismo , Agua de Mar/microbiología , Biomasa , Recuento de Colonia Microbiana , Ácidos Grasos/análisis , Gammaproteobacteria/clasificación , Gammaproteobacteria/crecimiento & desarrollo , Gammaproteobacteria/aislamiento & purificación , Genes Bacterianos , Genes de ARNr , Datos de Secuencia Molecular , Oceanospirillaceae/clasificación , Oceanospirillaceae/genética , Oceanospirillaceae/aislamiento & purificación , Fosfolípidos/análisis , FilogeniaRESUMEN
Pilot-scale tests for the land disposal of Se-enriched sediments from the San Luis Drain were performed in the San Joaquin Valley, California. Three test plots were instrumented and monitored on a dirt-road embankment near the sediment source area, providing an opportunity to measure Se oxidation and solubilization rates over a period of 2-3 yr. Soil, soil water, and groundwater data indicated that the amendment did not cause movement of dissolved Se below a depth of 15 cm. The low permeability of underlying sediments and the overall low Se solubility limit Se movement toward the groundwater table. Selenium remained in reduced forms and largely immobile at this site, although in-situ Se oxidation was measurable. Soluble Se concentrations increased from less than 0.5% to approximately 2.5% in the first 207 d following sediment application. Minor Se solubilization occurred after 439 and 704 d. Changes in Se fractionation measured using sequential extractions and Se speciation based on X-ray spectroscopy (XANES) results were in qualitative agreement. XANES results indicated initially rapid oxidation of organo-Se and/or elemental Se to selenite during the first 207 d, followed by minor oxidation after 439 d. Further solubilization of the Se inventory is anticipated, but at a low rate of 1-2% per year, comparable to rates measured in other studies.