Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Virol J ; 20(1): 173, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537596

RESUMEN

BACKGROUND: Several anti-retroviral drugs are available against Human immunodeficiency virus type-1, but have multiple adverse side effects. Hence, there is an incessant compulsion for effectual anti-retroviral agents with minimal or no intricacy. Traditionally, natural products have been the most successful source for the development of new medications. Withania somnifera, also known as Ashwagandha, is the utmost treasured medicinal plant used in Ayurveda, which holds the potential to give adaptogenic, immunomodulatory, and antiviral effects. However, its effect on HIV-1 replication at the cellular level has never been explored. Herein, we focused on the anti-HIV-1 activity and the probable mechanism of action of hydroalcoholic and aqueous extracts of Withania somnifera roots and its phytomolecules. METHODS: The cytotoxicity of the extracts was determined through MTT assay, while the in vitro anti-HIV-1 activity was assessed in TZM-bl cells against the HIV-1 strains of X4 and R5 subtypes. Results were confirmed in peripheral blood mononuclear cells, using the HIV-1 p24 antigen assay. Additionally, the mechanism of action was determined through the Time of Addition assay, which was further validated through the series of enzymatic assays, i.e. HIV-1 Integrase, Reverse transcriptase, and Protease assays. To explore the role of the identified active metabolites of Withania somnifera in antiretroviral activity, molecular docking analyses were performed against these key HIV-1 replication enzymes. RESULTS: The hydroalcoholic and aqueous extracts of Withania somnifera roots were found to be safer at the sub-cytotoxic concentrations and exhibited their ability to inhibit replication of two primary isolates of HIV-1 through cell-associated and cell-free assays, in dose-dependent kinetics. Several active phytomolecules found in Withania somnifera successfully established hydrogens bonds in the active binding pocket site residues responsible for the catalytic activity of HIV replication and therefore, signifying their role in the attenuation of HIV-1 infection as implied through the in silico molecular docking studies. CONCLUSIONS: Our research identified both the hydroalcoholic and aqueous extracts of Withania somnifera roots as potent inhibitors of HIV-1 infection. The in silico analyses also indicated the key components of Withania somnifera with the highest binding affinity against the HIV-1 Integrase by 12-Deoxywithastramonolide and 27-Hydroxywithanone, HIV-1 Protease by Ashwagandhanolide and Withacoagin, and HIV-1 Reverse transcriptase by Ashwagandhanolide and Withanolide B, thereby showing possible mechanisms of HIV-1 extenuation. Overall, this study classified the role of Withania somnifera extracts and their active compounds as potential agents against HIV-1 infection.


Asunto(s)
VIH-1 , Plantas Medicinales , Virosis , Withania , Humanos , Withania/química , Withania/metabolismo , Leucocitos Mononucleares , Simulación del Acoplamiento Molecular , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antirretrovirales
2.
Front Pharmacol ; 13: 973768, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313313

RESUMEN

Ayurvedic medicines Withania somnifera Dunal (ashwagandha) and AYUSH-64 have been used for the prevention and management of COVID-19 in India. The present study explores the effect of Ashwagandha and AYUSH-64 on important human CYP enzymes (CYP3A4, CYP2C8, and CYP2D6) to assess their interaction with remdesivir, a drug used for COVID-19 management during the second wave. The study also implies possible herb-drug interactions as ashwagandha and AYUSH-64 are being used for managing various pathological conditions. Aqueous extracts of ashwagandha and AYUSH-64 were characterized using LC-MS/MS. A total of 11 and 24 phytoconstituents were identified putatively from ashwagandha and AYUSH-64 extracts, respectively. In addition, in silico studies revealed good ADME properties of most of the phytoconstituents of these herbal drugs and suggested that some of these might possess CYP-450 inhibitory activity. In vitro CYP-450 studies with human liver microsomes showed moderate inhibition of CYP3A4, 2C8, and 2D6 by remdesivir, while ashwagandha had no inhibitory effect alone or in combination with remdesivir. AYUSH-64 also exhibited a similar trend; however, a moderate inhibitory effect on CYP2C8 was noticed. Thus, ashwagandha seems to be safe to co-administer with the substrates of CYP3A4, CYP2C8, and CYP2D6. However, caution is warranted in prescribing AYUSH-64 along with CYP2C8 substrate drugs. Furthermore, preclinical and clinical PK studies would be helpful for their effective and safer use in the management of various ailments along with other drugs.

3.
J Ayurveda Integr Med ; 13(1): 100463, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34177193

RESUMEN

Recent reports on COVID-19 suggest that, the susceptibility to COVID-19 infection and its progression have a genetic predisposition. Majorly associated genetic variants are found in human leukocyte antigen (HLA), angiotensin convertase enzyme (ACE; rs1799752: ACE2; rs73635825), and transmembrane protease serine 2 (TMPRSS-2; rs12329760) genes. Identifying highly prone population having these variants is imperative for determining COVID-19 therapeutic strategies. Ayurveda (Indian traditional system of medicine) concept of Prakriti holds potential to predict genomic and phenotypic variations. Reported work on Prakriti correlates HLA-DR alleles with three broad phenotypes (Tridosha) described in Ayurveda (AyuGenomics). This is suggestive of differences in immune responses in individuals with specific constitutions. Therefore, the reported studies provide clues for clinically relevant hypotheses to be tested in systematic studies. The proposed approach of Ayurveda-based phenotype screening may offer a way ahead to design customized strategies for management of COVID-19 based on differences in Prakriti, immune response, and drug response. However, this needs clinical evaluation of the relation between Prakriti and genetic or phenotypic variants in COVID-19 prone and resistant populations.

4.
PLoS One ; 16(6): e0248479, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34115763

RESUMEN

The Coronavirus disease (COVID-19) caused by the virus SARS-CoV-2 has become a global pandemic in a very short time span. Currently, there is no specific treatment or vaccine to counter this highly contagious disease. There is an urgent need to find a specific cure for the disease and global efforts are directed at developing SARS-CoV-2 specific antivirals and immunomodulators. Ayurvedic Rasayana therapy has been traditionally used in India for its immunomodulatory and adaptogenic effects, and more recently has been included as therapeutic adjuvant for several maladies. Amongst several others, Withania somnifera (Ashwagandha), Tinospora cordifolia (Guduchi) and Asparagus racemosus (Shatavari) play an important role in Rasayana therapy. The objective of this study was to explore the immunomodulatory and anti SARS-CoV2 potential of phytoconstituents from Ashwagandha, Guduchi and Shatavari using network pharmacology and docking. The plant extracts were prepared as per ayurvedic procedures and a total of 31 phytoconstituents were identified using UHPLC-PDA and mass spectrometry studies. To assess the immunomodulatory potential of these phytoconstituents an in-silico network pharmacology model was constructed. The model predicts that the phytoconstituents possess the potential to modulate several targets in immune pathways potentially providing a protective role. To explore if these phytoconstituents also possess antiviral activity, docking was performed with the Spike protein, Main Protease and RNA dependent RNA polymerase of the virus. Interestingly, several phytoconstituents are predicted to possess good affinity for the three targets, suggesting their application for the termination of viral life cycle. Further, predictive tools indicate that there would not be adverse herb-drug pharmacokinetic-pharmacodynamic interactions with concomitantly administered drug therapy. We thus make a compelling case to evaluate the potential of these Rasayana botanicals as therapeutic adjuvants in the management of COVID-19 following rigorous experimental validation.


Asunto(s)
Antivirales/metabolismo , Asparagus/química , COVID-19/metabolismo , Factores Inmunológicos/metabolismo , Simulación del Acoplamiento Molecular/métodos , Extractos Vegetales/metabolismo , SARS-CoV-2/enzimología , Tinospora/química , Withania/química , Antivirales/farmacocinética , Sitios de Unión , COVID-19/virología , Proteasas 3C de Coronavirus/metabolismo , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Interacciones de Hierba-Droga , Humanos , Factores Inmunológicos/farmacocinética , India , Medicina Ayurvédica/métodos , Fitoterapia/métodos , Extractos Vegetales/farmacocinética , Unión Proteica , Glicoproteína de la Espiga del Coronavirus/metabolismo , Tratamiento Farmacológico de COVID-19
5.
Med Princ Pract ; 30(2): 109-121, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32818934

RESUMEN

Type 2 diabetes mellitus (T2DM) accounts for >90% of the cases of diabetes in adults. Resistance to insulin action is the major cause that leads to chronic hyperglycemia in diabetic patients. T2DM is the consequence of activation of multiple pathways and factors involved in insulin resistance and ß-cell dysfunction. Also, the etiology of T2DM involves the complex interplay between genetics and environmental factors. This interplay can be governed efficiently by lifestyle modifications to achieve better management of diabetes. The present review aims at discussing the major factors involved in the development of T2DM that remain unfocussed during the anti-diabetic therapy. The review also focuses on lifestyle modifications that are warranted for the successful management of T2DM. In addition, it attempts to explain flaws in current strategies to combat diabetes. The employability of phytoconstituents as multitargeting molecules and their potential use as effective therapeutic adjuvants to first line hypoglycemic agents to prevent side effects caused by the synthetic drugs are also discussed.


Asunto(s)
Diabetes Mellitus Tipo 2/fisiopatología , Diabetes Mellitus Tipo 2/terapia , Estilo de Vida Saludable , Tejido Adiposo/metabolismo , Glucemia , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Dieta , Suplementos Dietéticos , Quimioterapia Combinada , Ejercicio Físico , Microbioma Gastrointestinal/fisiología , Humanos , Hipoglucemiantes/uso terapéutico , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/metabolismo , Fitoterapia/métodos , Resistina/metabolismo , Sueño
6.
J Ethnopharmacol ; 255: 112759, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32173425

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Withania somnifera (L.) Dunal (WS) is one of the moststudied Rasayana botanicals used in Ayurveda practice for its immunomodulatory, anti-aging, adaptogenic, and rejuvenating effects. The botanical is being used for various clinical indications, including cancer. Several studies exploring molecular mechanisms of WS suggest its possible role in improving clinical outcomes in cancer management. Therefore, research on WS may offer new insights in rational development of therapeutic adjuvants for cancer. AIM OF THIS REVIEW: The review aims at providing a detailed analysis of in silico, in vitro, in vivo, and clinical studies related to WS and cancer. It suggests possible role of WS in regulating molecular mechanisms associated with carcinogenesis. The review discusses potential of WS in cancer management in terms of cancer prevention, anti-cancer activity, and enhancing efficacy of cancer therapeutics. MATERIAL AND METHODS: The present narrative review offers a critical analysis of published literature on WS studies in cancer. The reported studies were analysed in the context of pathophysiology of cancer, commonly referred as 'cancer hallmarks'. The review attempts to bridge Ayurveda knowledge with biological insights into molecular mechanisms of cancer. RESULTS: Critical analysisof the published literature suggests an anti-cancer potential of WS with a key role in cancer prevention. The possible mechanisms for these effects are associated with the modulation of apoptotic, proliferative, and metastatic markers in cancer. WS can attenuate inflammatory responses and enzymes involved in invasion and metastatic progression of cancer.The properties of WS are likely to be mediated through withanolides, which may activate tumor suppressor proteins to restrict proliferation of cancer cells. Withanolides also regulate the genomic instability, and energy metabolism of cancer cells. The reported studies indicate the need for deeper understanding of molecular mechanisms of WS in inhibiting angiogenesis and promoting immunosurveillance. Additionally, WS can augment efficacy and safety of cancer therapeutics. CONCLUSION: The experimentally-supported evidence of immunomodulatory, anti-cancer, adaptogenic, and regenerative attributes of WS suggest its therapeutic adjuvant potential in cancer management. The adjuvant properties of withanolides can modulate multidrug resistance and reverse chemotherapy-induced myelosuppression. These mechanisms need to be further explored in systematically designed translational and clinical studies that will pave the way for integration of WS as a therapeutic adjuvant in cancer management.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias/tratamiento farmacológico , Extractos Vegetales/farmacología , Withania , Animales , Antineoplásicos Fitogénicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Humanos , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , Extractos Vegetales/aislamiento & purificación , Withania/química
7.
Porto Biomed J ; 4(2): e15, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31595257

RESUMEN

Integrative medicine refers to the blending of conventional and evidence-based complementary medicines and therapies with the aim of using the most appropriate of either or both modalities for ultimate patient benefits. One of the major hurdles for the same is the chances of potential herb-drug interactions (HDIs). These HDIs could be beneficial or harmful, or even fatal; therefore, a thorough understanding of the eventualities of HDIs is essential so that a successful integration of the modern and complementary alternative systems of medicine could be achieved. Here, we summarize all the important points related to HDIs, including types, tools/methods for study, and prediction of the HDIs, along with a special focus on interplays between drug metabolizing enzymes and transporters. In addition, this article covers future perspective, with a focus on background endogenous players of interplays and approaches to predict the drug-disease-herb interactions so as to fetch the desired effects of these interactions.

8.
J Cell Biochem ; 120(7): 11573-11581, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30767260

RESUMEN

The type 2 diabetes is one of the major global health issues that affects millions of people. This study evaluated the antidiabetic activity of aqueous extracts (AECP) and methanol extracts (MECP) from Ceiba pentandra trunk bark on an experimental model of type 2 diabetes (T2D). This model was induced in rats by the combination of a high-fat diet (HFD) and a single dose of streptozotocin (40 mg/kg, intraperitoneal) at the seventh day of experimentation. Diabetes was confirmed on day 10 by fasting blood glucose more than or equal to 200 mg/dL. Diabetic animals still under HFD were treated orally and twice daily, with MECP and AECP (75 and 150 mg/kg) or metformin (40 mg/kg) for 14 days. During the experiment, blood glucose and animal weights were determined. Oral glucose tolerance test was performed on day 15, followed by animals sacrifice for blood, liver, and pancreas collection. Total cholesterol and triglyceride levels were evaluated in plasma, whereas malondialdehyde (MDA), glutathione (GSH), superoxide dismutase, and catalase were quantified in tissue homogenates. AECP and MECP significantly reduced the hyperglycemia by up to 62% and significantly improved the oral glucose tolerance test. The impaired levels of cholesterol and triglycerides registered in diabetic control were significantly reversed by both extracts at all the doses used. Alterations in diabetic pancreas weight, GSH, and MDA were also significantly reversed by plant extracts. AECP and MECP possess type 2 antidiabetic effects that could result from their ability to improve the peripheral use of glucose, lipid metabolism or from their capacity to reduce oxidative stress. These finding provide a new avenue for better control and management of early or advanced T2D.

9.
Food Chem Toxicol ; 120: 448-461, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30055312

RESUMEN

There is a need of multifactorial management to treat T2DM. Till date, no clinically simulated animal model and therapy for NSAID-induced gastroenteropathic damage (NSAID-iGD) in T2DM patients. T2DM was developed using high-fat diet plus multiple low doses of streptozotocin (30 mg/kg, IP). Rats treated with ethanolic extract of Insulin plant (EIP; 125, 250 and 500 mg/kg, PO; b.i.d.)/Quercetin (QCT; 50 mg/kg)/vehicle for total 10 days. Diclofenac sodium (DCF; 7.5 mg/kg, PO, b.i.d.) administered for final five days of EIP/vehicle administration. Rats fasted after last dose on the 9th day; water was provided ad libitum. 12 h after the last dose on 10th day, GI tracts assessed for haemorrhagic damage, XO activity, LPO, intestinal permeability, luminal pH alterations along with haematological, biochemical and histological parameters. The evidence suggested that DCF administration caused significant gastroenteropathic damage. In presence of T2DM, NSAID-iGD significantly exacerbated. Whereas, QCT/EIP treatment significantly attenuated T2DM dependent exacerbation of NSAID-iGD, and also efficiently managed T2DM in a dose-dependent manner. Low amount of QCT in EIP(190.96 ±â€¯7.5 ng/mg) than its effective dose(50 mg/kg) indicates that EIP's other phytoconstituents (e.g. Kaempferol, Ascorbic acid, Lupeol, Diosgenin, ß-sitosterol, Stigmasterol, ß-amyrin, etc.) giving synergistic actions. Costus pictus/QCT has potential to be promising candidate to treat patient with T2DM and NSAID-gastroenteropathy in T2DM.


Asunto(s)
Antiinflamatorios no Esteroideos/efectos adversos , Costus/química , Enfermedades Gastrointestinales/prevención & control , Hiperglucemia/prevención & control , Extractos Vegetales/farmacología , Quercetina/farmacología , Animales , Cromatografía Líquida de Alta Presión , Diabetes Mellitus Tipo 2/complicaciones , Sinergismo Farmacológico , Enfermedades Gastrointestinales/inducido químicamente , Enfermedades Gastrointestinales/complicaciones , Hiperglucemia/complicaciones , Masculino , Ratas Wistar , Espectrofotometría Ultravioleta
10.
Chem Biol Interact ; 272: 53-64, 2017 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-28400101

RESUMEN

There is a need to find/discover novel leads to treat complex and/or multi-factorial-pathogenic disease(s) like Nonsteroidal anti-inflammatory drugs (NSAID)-induced gastroenteropathy or gastrointestinal (GI) toxicity as it has emerged as an important medical and socioeconomic problem. There is no approved therapeutic strategy to prevent NSAID-induced enteropathic damage and highly effective gastro-protective drugs such as ranitidine hydrochloride (RAN) exacerbate it. In this purview, the multi target drug discovery approach (MTDD), combination approach and hit to lead strategies based on the foundation of ethnopharmacology and/or reverse pharmacology holds strong potential. Hence, the primary objectives of the current study were to explore the mechanism behind the preventative/curative effects of quercetin (QCT) on RAN exacerbated diclofenac sodium (DIC)-induced enteropathic damage and to assess the effects of co-administration of QCT and RAN on DIC-induced gastropathic damage in rats. Rats were treated twice daily with QCT (35, 50 and 100 mg kg-1 PO) and/or RAN (15 mg kg-1 PO) or vehicle for a total of 10 days. In some experiments, DIC (9 mg kg-1) was administered orally twice daily for the final 5 days of RAN/QCT + RAN/vehicle administration. Rats in all the groups were fasted after the last dose on 9th day (free access to water). 12 h after the last dose on 10th day, rats were euthanized and their GI tracts were assessed for haemorrhagic damage, alteration in xanthine oxidase (XO) activity, lipid peroxidation, intestinal permeability and GI luminal pH alterations along with haematological and biochemical estimations. The macroscopic, haematological, biochemical and histological evidences suggested that, though, RAN prevented the DIC-induced gastric injury, it exacerbated enteropathic damage. However, QCT not only significantly attenuated the RAN-induced exacerbation of enteropathic damage caused by DIC at the doses of 50 and 100 mg kg-1, but, this combination provided complete GI safety against the toxic effects of DIC too. The mechanisms behind the gastro-enteroprotective ability of QCT may be related to its ability to inhibit XO activity thus, preventing enhanced oxidative stress on GI tissues, prevent lipid peroxidation, IP alteration and alteration in GI luminal pH. The preventative effects of QCT on NSAID-induced gastroenteropathy were ably supported by the QCT induced prevention of GI blood loss and serum protein loss. These pharmaco-mechanistic results of QCT are aligning to combination based MTDD approach and hence we propose it as a promising lead to treat NSAID-gastroenteropahty and related complications.


Asunto(s)
Antiinflamatorios no Esteroideos/toxicidad , Intestino Delgado/efectos de los fármacos , Quercetina/toxicidad , Ranitidina/farmacología , Estómago/efectos de los fármacos , Animales , Peso Corporal/efectos de los fármacos , Diclofenaco/toxicidad , Ingestión de Alimentos/efectos de los fármacos , Mucosa Gástrica/metabolismo , Enfermedades Gastrointestinales/inducido químicamente , Enfermedades Gastrointestinales/patología , Enfermedades Gastrointestinales/prevención & control , Intestino Delgado/metabolismo , Intestino Delgado/patología , Peroxidación de Lípido/efectos de los fármacos , Masculino , Malondialdehído/análisis , Estrés Oxidativo/efectos de los fármacos , Permeabilidad/efectos de los fármacos , Ranitidina/uso terapéutico , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Estómago/patología , Xantina Oxidasa/metabolismo
11.
Anc Sci Life ; 36(1): 56-57, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28182022
12.
J Integr Med ; 13(3): 165-72, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26006029

RESUMEN

OBJECTIVE: Consuming botanical dietary supplements or herbal drugs along with prescription drugs may lead to potential pharmacokinetic-pharmacodynamic (PK-PD) herb-drug interactions (HDI). The present study focuses on the importance of and novel approach for assessing HDI in integrative medicine with case examples of two frequently-used Ayurvedic Rasayana botanicals. METHODS: The aqueous extracts of Asparagus racemosus (ARE) and Gymnema sylvester (GSE) were prepared as per Ayurvedic Pharmacopoeia of India. Chemoprofiling of these extracts was done using high-performance liquid chromatography (HPLC). Additionally, ARE was characterized for the presence of shatavarins IV and I using HPLC & mass spectroscopy respectively. Effects of ARE and GSE were investigated on rat liver microsome using testosterone probe drug assay. The changes in formation of metabolite (6-ß hydroxy testosterone) were monitored on incubation of testosterone alone, testosterone with ketoconazole, ARE and GSE using HPLC. Half inhibitory concentration (IC50) was used to predict plausible HDI. RESULTS: ARE and GSE showed no inhibition with IC50 values >1 000 µg/mL while the standard inhibitor ketoconazole completely abolished CYP3A4-dependent activity at 0.531 µg/mL and IC50 was found to be 0.036 µg/mL. CONCLUSION: ARE and GSE prepared as per Ayurvedic Pharmacopoeia of India were found to be safe for CYP3A4-mediated inhibitory HDI in rats. Our in vitro study suggests the need of further in vivo investigation for HDI in order to provide clinical relevance.


Asunto(s)
Asparagus , Inhibidores del Citocromo P-450 CYP3A/farmacología , Gymnema sylvestre , Extractos Vegetales/farmacología , Animales , Cromatografía Líquida de Alta Presión , Citocromo P-450 CYP3A/metabolismo , Interacciones de Hierba-Droga , Isoenzimas/antagonistas & inhibidores , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA