Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arch Toxicol ; 96(3): 793-808, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34989853

RESUMEN

Sesquiterpene lactone helenalin is used as an antiphlogistic in European and Chinese folk medicine. The pharmacological activities of helenalin have been extensively investigated, yet insufficient information exists about its metabolic properties. The objectives of the present study were (1) to investigate the in vitro NADPH-dependent metabolism of helenalin (5 and 100 µM) using human and rat liver microsomes and liver cytosol, (2) to elucidate the role of human cytochrome P450 (CYP) enzymes in its oxidative metabolism, and (3) to study the inhibition of human CYPs by helenalin. Five oxidative metabolites were detected in NADPH-dependent human and rat liver microsomal incubations, while two reduced metabolites were detected only in NADPH-dependent human microsomal and cytosolic incubations. In human liver microsomes, the main oxidative metabolite was 14-hydroxyhelenalin, and in rat liver microsomes 9-hydroxyhelenalin. The overall oxidation of helenalin was several times more efficient in rat than in human liver microsomes. In humans, CYP3A4 and CYP3A5 followed by CYP2B6 were the main enzymes responsible for the hepatic metabolism of helenalin. The extrahepatic CYP2A13 oxidized helenalin most efficiently among CYP enzymes, possessing the Km value of 0.6 µM. Helenalin inhibited CYP3A4 (IC50 = 18.7 µM) and CYP3A5 (IC50 = 62.6 µM), and acted as a mechanism-based inhibitor of CYP2A13 (IC50 = 1.1 µM, KI = 6.7 µM, and kinact = 0.58 ln(%)/min). It may be concluded that the metabolism of helenalin differs between rats and humans, in the latter its oxidation is catalyzed by hepatic CYP2B6, CYP3A4, CYP3A5, and CYP3A7, and extrahepatic CYP2A13.


Asunto(s)
Inhibidores Enzimáticos del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Microsomas Hepáticos/metabolismo , Sesquiterpenos de Guayano/metabolismo , Animales , Inhibidores Enzimáticos del Citocromo P-450/administración & dosificación , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Sistema Enzimático del Citocromo P-450/efectos de los fármacos , Femenino , Humanos , Concentración 50 Inhibidora , Masculino , NADP/metabolismo , Ratas , Ratas Wistar , Sesquiterpenos de Guayano/administración & dosificación , Sesquiterpenos de Guayano/farmacología , Especificidad de la Especie
2.
Nutrients ; 11(4)2019 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-31010128

RESUMEN

Beer, the most popular beverage containing hops, is also frequently consumed by cancer patients. Moreover, non-alcoholic beer, owing to its nutritional value and high content of biological active compounds, is sometimes recommended to patients by oncologists. However, the potential benefits and negatives have to date not been sufficiently evaluated. The present study was designed to examine the effects of four main hop-derived prenylflavonoids on the viability, reactive oxygen species (ROS) formation, activity of caspases, and efficiency of the chemotherapeutics 5-fluorouracil (5-FU), oxaliplatin (OxPt) and irinotecan (IRI) in colorectal cancer cell lines SW480, SW620 and CaCo-2. All the prenylflavonoids exerted substantial antiproliferative effects in all cell lines, with xanthohumol being the most effective (IC50 ranging from 3.6 to 7.3 µM). Isoxanthohumol increased ROS formation and the activity of caspases-3/7, but 6-prenylnaringenin and 8-prenylnaringenin exerted antioxidant properties. As 6-prenylnaringenin acted synergistically with IRI, its potential in combination therapy deserves further study. However, other prenylflavonoids acted antagonistically with all chemotherapeutics at least in one cell line. Therefore, consumption of beer during chemotherapy with 5-FU, OxPt and IRI should be avoided, as the prenylflavonoids in beer could decrease the efficacy of the treatment.


Asunto(s)
Antineoplásicos/uso terapéutico , Cerveza , Neoplasias Colorrectales/tratamiento farmacológico , Interacciones Farmacológicas , Flavonoides/uso terapéutico , Humulus/química , Extractos Vegetales/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Antioxidantes , Cerveza/efectos adversos , Células CACO-2 , Caspasas/metabolismo , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Combinación de Medicamentos , Conducta Alimentaria , Flavanonas/farmacología , Flavanonas/uso terapéutico , Flavonoides/farmacología , Fluorouracilo/uso terapéutico , Humanos , Irinotecán/uso terapéutico , Oxaliplatino/uso terapéutico , Extractos Vegetales/farmacología , Propiofenonas/farmacología , Propiofenonas/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Resultado del Tratamiento , Xantonas/farmacología , Xantonas/uso terapéutico
3.
Arch Toxicol ; 92(1): 1-13, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28905185

RESUMEN

Public interest in natural therapies has increased significantly over past decades. Herbs and herbal products are extensively consumed worldwide and they are generally considered as safe. However, this may not always be true as many cases of herb-induced liver injury are reported every year. The liver is a frequent target tissue of toxicity from all classes of toxicants as liver structure and function predispose it to high sensitivity to xenobiotics. The present review is focused on the hepatotoxic properties of monoterpenes and sesquiterpenes, plant secondary metabolites that represent the major components of essential oils wildly used in folk medicines, pharmaceutical industry and cosmetics. Most of these terpenes easily enter the human body by oral absorption, penetration through the skin, or inhalation leading to measurable blood concentrations. Several studies showed that some monoterpenes (e.g., pulegone, menthofuran, camphor, and limonene) and sesquiterpenes (e.g., zederone, germacrone) exhibited liver toxicity, which is mainly based on reactive metabolites formation, increased concentration of reactive oxygen species and impaired antioxidant defense. There is a high probability that many other terpenes, without sufficiently known metabolism and effects in human liver, could also exert hepatotoxicity. Especially terpenes, that are important components of essential oils with proved hepatotoxicity, should deserve more attention. Intensive research in terpenes metabolism and toxicity represent the only way to reduce the risk of liver injury induced by essential oils and other terpenes-containing products.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Monoterpenos/toxicidad , Plantas/química , Sesquiterpenos/toxicidad , Animales , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Monoterpenos/química , Aceites Volátiles/química , Aceites Volátiles/toxicidad , Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sesquiterpenos/química
4.
Eur J Nutr ; 55(1): 361-71, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25663641

RESUMEN

PURPOSE: Consumption of dietary supplements with green tea extract (GTE) is popular for weight management, but it may be accompanied by various side effects, including interactions with drugs. The aim of the present in vivo study was to evaluate the effect of defined GTE (Polyphenon 60) in three dosage schemes on insulin, leptin and drug-metabolizing enzymes in obese mice. METHODS: Experimental obesity was induced by repeated s.c. application of monosodium glutamate to newborn mice. Green tea extract was administered in three dosage schemes in chow diet. The plasmatic levels of insulin and leptin were assayed using enzyme-linked immunosorbent assay. Enzyme activities and mRNA expressions of drug-metabolizing enzymes (totally 13) were analyzed in liver and small intestine using spectrophotometric and HPLC assays and RT-PCR, respectively. RESULTS: GTE-treatment decreased insulin and leptin levels. Eleven enzymes were significantly affected by GTE-treatment. Long-term administration of 0.01% GTE caused increase in the activity and mRNA level of cytochrome P450 3A4 (CYP3A4) ortholog in the liver as well as in the small intestine. Interestingly, short-term overdose by GTE (0.1%) had more pronounced effects on enzyme activities and mRNA expressions than long-term overdose. CONCLUSIONS: GTE-mediated induction of CYP3A4 ortholog, the main drug-metabolizing enzyme, could result in decreased efficacy of simultaneously or subsequently administered drug in obese individuals.


Asunto(s)
Suplementos Dietéticos , Obesidad/tratamiento farmacológico , Extractos Vegetales/farmacología , Té/química , Animales , Antioxidantes/farmacología , Hidrocarburo de Aril Hidroxilasas/genética , Hidrocarburo de Aril Hidroxilasas/metabolismo , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Familia 2 del Citocromo P450 , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Ensayo de Inmunoadsorción Enzimática , Insulina/sangre , Leptina/sangre , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Obesos , Obesidad/inducido químicamente , ARN Mensajero/genética , ARN Mensajero/metabolismo , Glutamato de Sodio/efectos adversos
5.
Planta Med ; 82(1-2): 89-96, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26485638

RESUMEN

Essential oil from the leaves of Myrica rubra, a subtropical Asian fruit tree traditionally used in folk medicines, has a significant antiproliferative effect in several intestinal cancer cell lines. Doxorubicin belongs to the most important cytostatics used in cancer therapy. The present study was designed to evaluate the effects of defined essential oil from M. rubra leaves on efficacy, prooxidative effect, and accumulation of doxorubicin in cancer cell lines and in non-cancerous cells. For this purpose, intestinal adenocarcinoma CaCo2 cells were used. Human fibroblasts (periodontal ligament) and a primary culture of rat hepatocytes served as models of non-cancerous cells. The results showed that the sole essential oil from M. rubra has a strong prooxidative effect in cancer cells while it acts as a mild antioxidant in hepatocytes. Combined with doxorubicin, the essential oil enhanced the antiproliferative and prooxidative effects of doxorubicin in cancer cells. At higher concentrations, synergism of doxorubicin and essential oil from M. rubra was proved. In non-cancerous cells, the essential oil did not affect the toxicity of doxorubicin and the doxorubicin-mediated reactive oxygen species formation. The essential oil increased the intracellular concentration of doxorubicin and enhanced selectively the doxorubicin accumulation in nuclei of cancer cells. Taken together, essential oil from M. rubra leaves could be able to improve the doxorubicin efficacy in cancer cells due to an increased reactive oxygen species production, and the doxorubicin accumulation in nuclei of cancer cells.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Doxorrubicina/farmacología , Myrica/química , Aceites Volátiles/farmacología , Extractos Vegetales/farmacología , Animales , Células CACO-2 , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Sinergismo Farmacológico , Hepatocitos/efectos de los fármacos , Humanos , Neoplasias Intestinales , Masculino , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
6.
Drug Metab Rev ; 47(4): 520-33, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26415702

RESUMEN

Carbonyl reductase 1 (CBR1), an enzyme belonging to the short-chain dehydrogenases/reductases family, has been detected in all human tissues. CBR1 catalyzes the reduction of many xenobiotics, including important drugs (e.g. anthracyclines, nabumetone, bupropion, dolasetron) and harmful carbonyls and quinones. Moreover, it participates in the metabolism of a number of endogenous compounds and it may play a role in certain pathologies. Plant polyphenols are not only present in many human food sources, but are also a component of many popular dietary supplements and herbal medicines. Many studies reviewed herein have demonstrated the potency of certain flavonoids, stilbenes and curcuminoids in the inhibition of the activity of CBR1. Interactions of these polyphenols with transcriptional factors, which regulate CBR1 expression, have also been reported in several studies. As CBR1 plays an important role in drug metabolism as well as in the protection of the organism against potentially harmful carbonyls, the modulation of its expression/activity may have significant pharmacological and/or toxicological consequences. Some polyphenols (e.g. luteolin, apigenin and curcumin) have been shown to be very potent CBR1 inhibitors. The inhibition of CBR1 seems useful regarding the increased efficacy of anthracycline therapy, but it may cause the worse detoxification of reactive carbonyls. Nevertheless, all known information about the interactions of polyphenols with CBR1 have only been based on the results of in vitro studies. With respect to the high importance of CBR1 and the frequent consumption of polyphenols, in vivo studies would be very helpful for the evaluation of risks/benefits of polyphenol interactions with CBR1.


Asunto(s)
Oxidorreductasas de Alcohol/antagonistas & inhibidores , Oxidorreductasas de Alcohol/metabolismo , Polifenoles/farmacología , Oxidorreductasas de Alcohol/biosíntesis , Oxidorreductasas de Alcohol/genética , Animales , Bupropión/metabolismo , Butanonas/metabolismo , Butirofenonas/metabolismo , Daunorrubicina/metabolismo , Doxorrubicina/metabolismo , Regulación Enzimológica de la Expresión Génica , Haloperidol/metabolismo , Humanos , Indoles/metabolismo , Nabumetona , Neoplasias/enzimología , Fenilpropionatos/metabolismo , Quinolizinas/metabolismo , Especificidad por Sustrato , Xenobióticos/metabolismo
7.
Nutr Res ; 35(10): 901-909, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26319613

RESUMEN

Consumption of antioxidant-enriched diets is 1 method of addressing obesity, which is associated with chronic oxidative stress and changes in the activity/expression of various enzymes. In this study, we hypothesized that the modulation of antioxidant enzymes and redox status through a cranberry extract (CBE)-enriched diet would differ between obese and nonobese mice. The CBE used in this study was obtained from the American cranberry (Vaccinium macrocarpon, Ericaceae), a popular constituent of dietary supplements that is a particularly rich source of (poly)phenols and has strong antioxidant properties. The present study was designed to test and compare the in vivo effects of 28-day consumption of a CBE-enriched diet (2%) on the antioxidant status of nonobese mice and mice with monosodium glutamate-induced obesity. Plasma, erythrocytes, liver, and small intestine were studied concurrently to obtain more complex information. The specific activities, protein, and messenger RNA expression levels of antioxidant enzymes as well as the levels of malondialdehyde and thiol (SH) groups were analyzed. Cranberry extract treatment increased the SH group content in plasma and the glutathione S-transferase activity in the erythrocytes of the obese and nonobese mice. In addition, in the obese animals, the CBE treatment reduced the malondialdehyde content in erythrocytes and increased NAD(P)H: quinone oxidoreductase (liver) and catalase (erythrocytes and small intestine) activities. The elevation of hepatic NAD(P)H: quinone oxidoreductase activity was accompanied by an increase in the corresponding messenger RNA levels. The effects of CBE on the activity of antioxidant enzymes and redox status were more pronounced in the obese mice compared with the nonobese mice.


Asunto(s)
Catalasa/metabolismo , Frutas/química , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Obesidad/enzimología , Extractos Vegetales/administración & dosificación , Vaccinium macrocarpon , Animales , Antioxidantes/administración & dosificación , Catalasa/sangre , Dieta , Eritrocitos/química , Glutatión Transferasa/sangre , Intestino Delgado/enzimología , Hígado/enzimología , Malondialdehído/sangre , Ratones , NAD(P)H Deshidrogenasa (Quinona)/genética , Obesidad/sangre , Obesidad/inducido químicamente , Oxidación-Reducción , ARN Mensajero/análisis , Compuestos de Sulfhidrilo/sangre
8.
Acta Pharm ; 65(1): 65-73, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25781705

RESUMEN

Green tea is a favorite beverage and its extracts are popular components of dietary supplements. The aim of the present in vivo study was to obtain detailed information about the effect of a standard green tea extract (Polyphenon, P), at different doses, on antioxidant enzymes and oxidative stress markers in murine blood, liver, small and large intestine. In all doses, P improved the oxidative stress status via an increased content of plasmatic SH-groups (by 21-67 %). Regarding antioxidant enzymes in tissues, the low dose of P had the best positive effect as it elevated the activity of NADPH quinone reductase in liver and small intestine, thioredoxin reductase in small intestine and hepatic superoxide dismutase. Based on these facts, consumption of green tea seems to be safe and beneficial, while consumption of dietary supplements containing high doses of catechins may disturb oxidative balance by lowering the activity of thioredoxin reductase, glutathione S-transferase, glutathione reductase and superoxide dismutase.


Asunto(s)
Antioxidantes/metabolismo , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Té/química , Administración Oral , Animales , Suplementos Dietéticos , Relación Dosis-Respuesta a Droga , Masculino , Ratones , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Extractos Vegetales/administración & dosificación , Extractos Vegetales/aislamiento & purificación
9.
Curr Top Med Chem ; 14(22): 2478-94, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25478887

RESUMEN

Sesquiterpenes, 15-carbon compounds formed from 3 isoprenoid units, are secondary metabolites produced mainly in higher plants but also in fungi and invertebrates. Sesquiterpenes occur in human food, but they are principally taken as components of many folk medicines and dietary supplements. Moreover, sesquiterpenes could become a rich reservoir of candidate compounds for drug discovery as several sesquiterpenes and their derivatives possess interesting biological activities. Recent efforts in the research and development of new drugs derived from natural products have led to the identification of a variety of sesquiterpenes that possess promising anti-inflammatory, antiparasitic and anti-carcinogenic activities. On the other hand, some sesquiterpenes can cause serious toxicity and other adverse effects. Therefore, more and more attention has been paid to the investigation of the mechanisms of biological activities of sesquiterpenes in vitro as well as in vivo. The data collected in this review show that many of sesquiterpenes biological activities are based on antioxidant or pro-oxidant actions of sesquiterpenes. Structure, concentration, metabolism as well as type of cells determine if sesquiterpene acts as anti-oxidant or pro-oxidant. Therefore, detailed research of sesquiterpenes is very important for evaluation of their efficacy and for their safe use.


Asunto(s)
Antioxidantes/metabolismo , Sesquiterpenos/metabolismo , Antioxidantes/química , Estructura Molecular , Oxidación-Reducción , Sesquiterpenos/química
10.
Molecules ; 19(9): 14948-60, 2014 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-25237750

RESUMEN

The use of dietary supplements containing cranberry extract is a common way to prevent urinary tract infections. As consumption of these supplements containing a mixture of concentrated anthocyanins and proanthocyanidins has increased, interest in their possible interactions with drug-metabolizing enzymes has grown. In this in vivo study, rats were treated with a standardized cranberry extract (CystiCran®) obtained from Vaccinium macrocarpon in two dosage schemes (14 days, 0.5 mg of proanthocyanidins/kg/day; 1 day, 1.5 mg of proanthocyanidins/kg/day). The aim of this study was to evaluate the effect of anthocyanins and proanthocyanidins contained in this extract on the activity and expression of intestinal and hepatic biotransformation enzymes: cytochrome P450 (CYP1A1, CYP1A2, CYP2B and CYP3A), carbonyl reductase 1 (CBR1), glutathione-S-transferase (GST) and UDP-glucuronosyl transferase (UGT). Administration of cranberry extract led to moderate increases in the activities of hepatic CYP3A (by 34%), CYP1A1 (by 38%), UGT (by 40%), CBR1 (by 17%) and GST (by 13%), while activities of these enzymes in the small intestine were unchanged. No changes in the relative amounts of these proteins were found. Taken together, the interactions of cranberry extract with simultaneously administered drugs seem not to be serious.


Asunto(s)
Intestinos/efectos de los fármacos , Hígado/efectos de los fármacos , Extractos Vegetales/farmacología , Vaccinium macrocarpon/química , Animales , Biotransformación , Intestinos/enzimología , Hígado/enzimología , Masculino , Ratas , Ratas Wistar
11.
Pak J Pharm Sci ; 27(1): 103-6, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24374437

RESUMEN

The aim of this study was to evaluate in vitro anti-proliferative (tested on MCF-7, MDA-MB-231, and MCF-10A cell lines) and anti-inflammatory (evaluated as inhibition of prostaglandin E2 synthesis catalyzed by cyclooxygenase-2) effect of various extracts from Vaccinium bracteatum leaves and fruits. The highest anti-proliferative effect possessed leaf dichloromethane extract with IC50 values ranging from 93 to 198 µg/mL. In the case of cyclooxygenase-2 inhibition, n-hexane, dichloromethane, and ethanol fruit extracts showed the best activity with IC50 values = 2.0, 5.4, and 12.7 µg/mL, respectively. These results indicate that V. bracteatum leaves and fruits could be useful source of anti-cancer and anti-inflammatory compounds.


Asunto(s)
Antiinflamatorios/farmacología , Antineoplásicos Fitogénicos/farmacología , Extractos Vegetales/farmacología , Vaccinium , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Frutas , Humanos , Hojas de la Planta
12.
Drug Metab Rev ; 44(4): 267-86, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22998389

RESUMEN

Many studies reviewed herein demonstrated the potency of some flavonoids to modulate the activity and/or expression of glutathione S-transferases (GSTs). Because GSTs play a crucial role in the detoxification of xenobiotics, their inhibition or induction may significantly affect metabolism and biological effects of many drugs, industrials, and environmental contaminants. The effect of flavonoids on GSTs strongly depends on flavonoid structure, concentration, period of administration, as well as on GST isoform and origin. Moreover, the results obtained in vitro are often contrary to the vivo results. Based on these facts, the revelation of important flavonoid-drug or flavonoid-pollutant interaction has been complicated. However, it should be borne in mind that ingestion of certain flavonoids in combination with drugs or pollutants (e.g., acetaminophen, simvastatin, cyclophosphamide, cisplatine, polycyclic aromatic hydrocarbons, chlorpyrifos, acrylamide, and isocyanates), which are GST substrates, could have significant pharmacological and toxicological consequences. Although reasonable consumptions of a flavonoids-rich diet (that may lead to GST induction) are mostly beneficial, the uncontrolled intake of high concentrations of certain flavonoids (e.g., quercetin and catechins) in dietary supplements (that may cause GST inhibition) may threaten human health.


Asunto(s)
Antioxidantes/metabolismo , Suplementos Dietéticos , Flavonoides/metabolismo , Glutatión Transferasa/biosíntesis , Animales , Antioxidantes/efectos adversos , Antioxidantes/uso terapéutico , Biotransformación , Suplementos Dietéticos/efectos adversos , Inducción Enzimática , Inhibidores Enzimáticos/efectos adversos , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/uso terapéutico , Flavonoides/efectos adversos , Flavonoides/uso terapéutico , Interacciones Alimento-Droga , Glutatión Transferasa/antagonistas & inhibidores , Glutatión Transferasa/química , Glutatión Transferasa/metabolismo , Humanos , Hígado/efectos de los fármacos , Hígado/enzimología , Hígado/metabolismo , Xenobióticos/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA