Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Water Res ; 249: 120825, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38118222

RESUMEN

Adsorption processes with carbon-based adsorbents have received substantial attention as a solution to remove uranium from drinking water. This study investigated uranium adsorption by a polymer-based spherical activated carbon (PBSAC) characterised by a uniformly smooth exterior and an extended surface of internal cavities accessible via mesopores. The static adsorption of uranium was investigated applying varying PBSAC properties and relevant solution chemistry. Spatial time-of-flight secondary ion mass spectrometry (ToF-SIMS) was employed to visualise the distribution of the different uranium species in the PBSAC. The isotherms and thermodynamics calculations revealed monolayer adsorption capacities of 28-667 mg/g and physical adsorption energies of 13-21 kJ/mol. Increasing the surface oxygen content of the PBSAC to 10 % enhanced the adsorption and reduced the equilibrium time to 2 h, while the WHO drinking water guideline of 30 µgU/L could be achieved for an initial concentration of 250 µgU/L. Uranium adsorption with PBSAC was favourable at the pH 6-8. At this pH range, uranyl carbonate complexes (UO2CO3(aq), UO2(CO3)22-, (UO2)2CO3(OH)3-) predominated in the solution, and the ToF-SIMS analysis revealed that the adsorption of these complexes occurred on the surface and inside the PBSAC due to intra-particle diffusion. For the uranyl cations (UO22+, UO2OH+) at pH 2-4, only shallow adsorption in the outermost PBSAC layers was observed. The work demonstrated the effective removal of uranium from contaminated natural water (67 µgU/L) and meeting both German (10 µgU/L) and WHO guideline concentrations. These findings also open opportunities to consider PBSAC in hybrid treatment technologies for uranium removal, for instance, from high-level radioactive waste.


Asunto(s)
Agua Potable , Uranio , Agua Potable/análisis , Uranio/análisis , Carbón Orgánico , Adsorción , Polímeros , Concentración de Iones de Hidrógeno
2.
Sci Total Environ ; 829: 154287, 2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35248638

RESUMEN

Selenium (Se) is a dissolved oxyanion drinking water contaminant requiring appropriate removal technologies. The removal of selenite (SeIV) and selenite (SeVI) with nanofiltration (NF) was investigated with an emphasis on the role of Se speciation and membrane charge screening on the retention mechanisms. The pH (2 to 12) showed strong pH dependence of Se retention, which was due to the speciation. No significant impact of salinity was observed by increasing NaCl concentration from 0.58 to 20 g/L. Application of the Donnan steric pore partitioning model with dielectric exclusion (DSPM-DE) showed that Donnan exclusion was the dominant retention mechanism for the oxyanions Se species. Nine different organic matter (OM) types were investigated at 10 mgC/L to determine if OM affects Se retention. Only OM characterised by negatively charged fractions, such as humic acid (HA), enhanced Se retention with NF270 of up to 20% for SeIV and 10% for SeVI. This was explained by enhanced Donnan exclusion. NF270 was effective in removing Se from real water (Gahard groundwater, Ille et Vilaine, France). The EU guideline (20 µg/L) of Se in drinking water was achieved with comparable performance to OM-free experiments using synthetic waters.


Asunto(s)
Agua Potable , Selenio , Francia , Sustancias Húmicas/análisis , Ácido Selenioso , Selenio/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA