Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Animal ; 14(11): 2326-2335, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32522297

RESUMEN

The postpartum period is crucial in dairy cows and is marked by major physiological and metabolic changes that affect milk production, immune response and fertility. Nutrition remains the most important lever for limiting the negative energy balance and its consequences on general health status in highly selected dairy cows. In order to analyze the effect of a commercial micronutrient on intrinsic parameters, performances and the epigenome of dairy cows, 2 groups of 12 Holstein cows were used: 1 fed a standard diet (mainly composed of corn silage, soybean meal and non-mineral supplement) and the other 1 fed the same diet supplemented with the commercial micronutrient (µ-nutrient supplementation) for 4 weeks before calving and 8 weeks thereafter. Milk production and composition, BW, body condition score (BCS), DM intake (DMI) and health (calving score, metritis and mastitis) were recorded over the study period. Milk samples were collected on D15 and D60 post-calving for analyses of casein, Na+ and K+ contents and metalloprotease activity. Milk leukocytes and milk mammary epithelial cells (mMECs) were purified and counted. The viability of mMECs was assessed, together with their activity, through an analysis of gene expression. At the same time points, peripheral blood mononuclear cells (PBMCs) were purified and counted. Using genomic DNA extracted from PBMCs, mMECs and milk leukocytes, we assessed global DNA methylation (Me-CCGG) to evaluate the epigenetic imprinting associated with the µ-nutrient-supplemented diet. The µ-nutrient supplementation increased BCS and BW without modifying DMI or milk yield and composition. It also improved calving condition, reducing the time interval between calving and first service. Each easily collectable cell type displayed a specific pattern of Me-CCGG with only subtle changes associated with lactation stages in PBMCs. In conclusion, the response to the µ-nutrient supplementation improved the body condition without alteration of global epigenetic status in dairy cows.


Asunto(s)
Lactancia , Leucocitos Mononucleares , Animales , Bovinos , Dieta/veterinaria , Suplementos Dietéticos , Epigénesis Genética , Femenino , Micronutrientes , Leche , Periodo Posparto
2.
J Dairy Sci ; 98(12): 8775-87, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26387019

RESUMEN

It has been previously shown that the long-term inhibition of milking-induced prolactin (PRL) release by quinagolide (QN), a dopamine agonist, reduces milk yield in dairy cows. To further demonstrate that PRL is galactopoietic in cows, we performed a short-term experiment that used PRL injections to restore the release of PRL at milking in QN-treated cows. Nine Holstein cows were assigned to treatments during three 5-d periods in a 3×3 Latin square design: 1) QN: twice-daily i.m. injections of 1mg of QN; 2) QN-PRL: twice-daily i.m. injections of 1mg of QN and twice-daily (at milking time) i.v. injections of PRL (2µg/kg body weight); and 3) control: twice-daily injections of the vehicles. Mammary epithelial cells (MEC) were purified from milk so that their viability could be assessed, and mammary biopsies were harvested for immunohistological analyses of cell proliferation using PCNA and STAT5 staining. In both milk-purified MEC and mammary tissue, the mRNA levels of milk proteins and BAX were determined using real-time reverse-transcription PCR. Daily QN injections reduced milking-induced PRL release. The area under the PRL curve was similar in the control and PRL injection treatments, but the shape was different. The QN treatment decreased milk, lactose, protein, and casein production. Injections of PRL did not restore milk yield but tended to increase milk protein yield. In mammary tissue, the percentage of STAT5-positive cells was reduced during QN but not during QN-PRL in comparison with the control treatment. The percentage of PCNA-positive cells was greater during QN-PRL injections than during the control or QN treatment and tended to be lower during QN than during the control treatment. In milk-purified MEC, κ-casein and α-lactalbumin mRNA levels were lower during QN than during the control treatment, but during QN-PRL, they were not different from the control treatment. In mammary tissue, the BAX mRNA level was lower during QN-PRL than during QN. The number of MEC exfoliated into milk was increased by QN injections but tended to be decreased by PRL injections. Injections of PRL also increased the viability of MEC harvested from milk. Although PRL injections at milking could not reverse the effect of QN treatment on milk production, their effects on cell survival and exfoliation and on gene expression suggest that the effect of QN treatment on the mammary gland is due to QN's inhibition of PRL secretion.


Asunto(s)
Aminoquinolinas/administración & dosificación , Bovinos/metabolismo , Lactancia/efectos de los fármacos , Glándulas Mamarias Animales/efectos de los fármacos , Prolactina/administración & dosificación , Prolactina/antagonistas & inhibidores , Animales , Caseínas/metabolismo , Proliferación Celular/efectos de los fármacos , Suplementos Dietéticos , Agonistas de Dopamina/farmacología , Células Epiteliales/química , Células Epiteliales/citología , Femenino , Lactalbúmina/metabolismo , Lactosa/análisis , Glándulas Mamarias Animales/química , Glándulas Mamarias Animales/citología , Leche/citología , Proteínas de la Leche/genética , Antígeno Nuclear de Célula en Proliferación/análisis , ARN Mensajero/análisis , Factor de Transcripción STAT5/análisis
3.
Animal ; 6(12): 1961-72, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22717104

RESUMEN

The main aim of the present study was to examine the effects of long-term supplementing diets with saturated or unprotected polyunsaturated fatty acids from two different plant oils rich in either n-3 or n-6 fatty acids (FAs) plus docosahexaenoic acid (DHA)-rich algae on mammary gene expression and milk fat composition in lactating dairy cows. Gene expression was determined from mammary tissue and milk epithelial cells. Eighteen primiparous German Holstein dairy cows in mid-lactation were randomly assigned into three dietary treatments that consist of silage-based diets supplemented with rumen-stable fractionated palm fat (SAT; 3.1% of the basal diet dry matter, DM), or a mixture of linseed oil (2.7% of the basal diet DM) plus DHA-rich algae (LINA; 0.4% of the basal diet DM) or a mixture of sunflower oil (2.7% of the basal diet DM) plus DHA-rich algae (SUNA; 0.4% of the basal diet DM), for a period of 10 weeks. At the end of the experimental period, the cows were slaughtered and mammary tissues were collected to study the gene expression of lipogenic enzymes. During the last week, the milk yield and composition were determined, and milk was collected for FA measurements and the isolation of milk purified mammary epithelial cells (MECs). Supplementation with plant oils and DHA-rich algae resulted in milk fat depression (MFD; yield and percentage). The secretion of de novo FAs in the milk was reduced, whereas the secretion of trans-10,cis-12-CLA and DHA were increased. These changes in FA secretions were associated in mammary tissue with a joint down-regulation of mammary lipogenic enzyme gene expression (stearoyl-CoA desaturase, SCD1; FA synthase, FASN) and expression of the regulatory element binding transcription factor (SREBF1), whereas no effect was observed on lipoprotein lipase (LPL) and glycerol-3-phosphate acyltransferase 1, mitochondrial (GPAM). A positive relationship between mammary SCD1 and SREBF1 mRNA abundances was observed, suggesting a similar regulation for these genes. Such data on mammary gene expression in lactating cows presenting MFD contribute to strengthen the molecular mechanisms that govern milk fat synthesis in the mammary glands. In purified MEC, the dietary treatments had no effect on gene expressions. Differences between mammary tissue and milk purified MEC gene expression were attributed to the effect of lipid supplements on the number of milk purified MEC and its RNA quality, which are determinant factors for the analysis of gene expression using milk cells.


Asunto(s)
Alimentación Animal/análisis , Bovinos/fisiología , Ácidos Docosahexaenoicos/administración & dosificación , Regulación hacia Abajo/efectos de los fármacos , Ácidos Grasos/metabolismo , Aceite de Linaza/administración & dosificación , Lípidos/biosíntesis , Aceites de Plantas/administración & dosificación , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Arecaceae , Bovinos/genética , Dieta/veterinaria , Grasas de la Dieta/administración & dosificación , Suplementos Dietéticos/análisis , Células Epiteliales/enzimología , Células Epiteliales/metabolismo , Ácidos Grasos/análisis , Ácidos Grasos Insaturados/metabolismo , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Lactancia , Glándulas Mamarias Animales/enzimología , Glándulas Mamarias Animales/metabolismo , Leche/química , Reacción en Cadena de la Polimerasa/veterinaria , ARN Mensajero/análisis , Rumen/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Aceite de Girasol
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA