Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neuroinflammation ; 20(1): 302, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38111048

RESUMEN

G protein-coupled receptor 120 (GPR120, Ffar4) is a sensor for long-chain fatty acids including omega-3 polyunsaturated fatty acids (n-3 PUFAs) known for beneficial effects on inflammation, metabolism, and mood. GPR120 mediates the anti-inflammatory and insulin-sensitizing effects of n-3 PUFAs in peripheral tissues. The aim of this study was to determine the impact of GPR120 stimulation on microglial reactivity, neuroinflammation and sickness- and anxiety-like behaviors by acute proinflammatory insults. We found GPR120 mRNA to be enriched in  both murine and human microglia, and in situ hybridization revealed GPR120 expression in microglia of the nucleus accumbens (NAc) in mice. In a manner similar to or exceeding n-3 PUFAs, GPR120 agonism (Compound A, CpdA) strongly attenuated lipopolysaccharide (LPS)-induced proinflammatory marker expression in primary mouse microglia, including tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß), and inhibited nuclear factor-ĸB translocation to the nucleus. Central administration of CpdA to adult mice blunted LPS-induced hypolocomotion and anxiety-like behavior and reduced TNF-α, IL-1ß and IBA-1 (microglia marker) mRNA in the NAc, a brain region modulating anxiety and motivation and implicated in neuroinflammation-induced mood deficits. GPR120 agonist pre-treatment attenuated NAc microglia reactivity and alleviated sickness-like behaviors elicited by central injection TNF-α and IL-1ß. These findings suggest that microglial GPR120 contributes to neuroimmune regulation and behavioral changes in response to acute infection and elevated brain cytokines. GPR120 may participate in the protective action of n-3 PUFAs at the neural and behavioral level and offers potential as treatment target for neuroinflammatory conditions.


Asunto(s)
Ácidos Grasos Omega-3 , Microglía , Receptores Acoplados a Proteínas G , Adulto , Animales , Humanos , Ratones , Ansiedad/inducido químicamente , Ansiedad/tratamiento farmacológico , Ácidos Grasos/metabolismo , Ácidos Grasos Omega-3/farmacología , Inflamación/metabolismo , Lipopolisacáridos/toxicidad , Microglía/metabolismo , Enfermedades Neuroinflamatorias , ARN Mensajero/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
2.
Cell Rep ; 17(5): 1217-1226, 2016 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-27783937

RESUMEN

α/ß-Hydrolase domain 6 (ABHD6) is a monoacylglycerol hydrolase that degrades the endocannabinoid 2-arachidonoylglycerol (2-AG). Although complete or peripheral ABHD6 loss of function is protective against diet-induced obesity and insulin resistance, the role of ABHD6 in the central control of energy balance is unknown. Using a viral-mediated knockout approach, targeted endocannabinoid measures, and pharmacology, we discovered that mice lacking ABHD6 from neurons of the ventromedial hypothalamus (VMHKO) have higher VMH 2-AG levels in conditions of endocannabinoid recruitment and fail to physiologically adapt to key metabolic challenges. VMHKO mice exhibited blunted fasting-induced feeding and reduced food intake, energy expenditure, and adaptive thermogenesis in response to cold exposure, high-fat feeding, and dieting (transition to a low-fat diet). Our findings identify ABHD6 as a regulator of the counter-regulatory responses to major metabolic shifts, including fasting, nutrient excess, cold, and dieting, thereby highlighting the importance of ABHD6 in the VMH in mediating energy metabolism flexibility.


Asunto(s)
Metabolismo Energético , Hipotálamo/metabolismo , Monoacilglicerol Lipasas/metabolismo , Animales , Ácidos Araquidónicos/farmacología , Frío , Dieta Alta en Grasa , Endocannabinoides/farmacología , Metabolismo Energético/efectos de los fármacos , Eliminación de Gen , Glicéridos/farmacología , Hipotálamo/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Obesidad/metabolismo , Obesidad/patología , Reproducibilidad de los Resultados , Termogénesis/efectos de los fármacos , Pérdida de Peso/efectos de los fármacos
3.
J Neurochem ; 133(2): 253-65, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25598214

RESUMEN

Acyl-CoA-binding protein (ACBP) is a ubiquitously expressed protein that binds intracellular acyl-CoA esters. Several studies have suggested that ACBP acts as an acyl-CoA pool former and regulates long-chain fatty acids (LCFA) metabolism in peripheral tissues. In the brain, ACBP is known as Diazepam-Binding Inhibitor, a secreted peptide acting as an allosteric modulator of the GABAA receptor. However, its role in central LCFA metabolism remains unknown. In the present study, we investigated ACBP cellular expression, ACBP regulation of LCFA intracellular metabolism, FA profile, and FA metabolism-related gene expression using ACBP-deficient and control mice. ACBP was mainly found in astrocytes with high expression levels in the mediobasal hypothalamus. We demonstrate that ACBP deficiency alters the central LCFA-CoA profile and impairs unsaturated (oleate, linolenate) but not saturated (palmitate, stearate) LCFA metabolic fluxes in hypothalamic slices and astrocyte cultures. In addition, lack of ACBP differently affects the expression of genes involved in FA metabolism in cortical versus hypothalamic astrocytes. Finally, ACBP deficiency increases FA content and impairs their release in response to palmitate in hypothalamic astrocytes. Collectively, these findings reveal for the first time that central ACBP acts as a regulator of LCFA intracellular metabolism in astrocytes. Acyl-CoA-binding protein (ACBP) or diazepam-binding inhibitor is a secreted peptide acting centrally as a GABAA allosteric modulator. Using brain slices, cortical, and hypothalamic astrocyte cultures from ACBP KO mice, we demonstrate that ACBP mainly localizes in astrocytes and regulates unsaturated but not saturated long-chain fatty acids (LCFA) metabolism. In addition, ACBP deficiency alters FA metabolism-related genes and results in intracellular FA accumulation while affecting their release. Our results support a novel role for ACBP in brain lipid metabolism. FA, fatty acids; KO, knockout; PL, phospholipids; TAG, triacylglycerol.


Asunto(s)
Astrocitos/metabolismo , Inhibidor de la Unión a Diazepam/metabolismo , Ácidos Grasos/metabolismo , Hipotálamo/citología , Metabolismo de los Lípidos/genética , Acilcoenzima A/metabolismo , Animales , Células Cultivadas , Inhibidor de la Unión a Diazepam/genética , Proteínas de Unión a Ácidos Grasos , Regulación de la Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Técnicas In Vitro , Masculino , Ratones , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA