Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 5013, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36973465

RESUMEN

Hydrocarbon-degrading bacteria, which can be found living with eukaryotic phytoplankton, play a pivotal role in the fate of oil spillage to the marine environment. Considering the susceptibility of calcium carbonate-bearing phytoplankton under future ocean acidification conditions and their oil-degrading communities to oil exposure under such conditions, we investigated the response of non-axenic E. huxleyi to crude oil under ambient versus elevated CO2 concentrations. Under elevated CO2 conditions, exposure to crude oil resulted in the immediate decline of E. huxleyi, with concomitant shifts in the relative abundance of Alphaproteobacteria and Gammaproteobacteria. Survival of E. huxleyi under ambient conditions following oil enrichment was likely facilitated by enrichment of oil-degraders Methylobacterium and Sphingomonas, while the increase in relative abundance of Marinobacter and unclassified Gammaproteobacteria may have increased competitive pressure with E. huxleyi for micronutrient acquisition. Biodegradation of the oil was not affected by elevated CO2 despite a shift in relative abundance of known and putative hydrocarbon degraders. While ocean acidification does not appear to affect microbial degradation of crude oil, elevated mortality responses of E. huxleyi and shifts in the bacterial community illustrates the complexity of microalgal-bacterial interactions and highlights the need to factor these into future ecosystem recovery projections.


Asunto(s)
Petróleo , Petróleo/toxicidad , Petróleo/metabolismo , Dióxido de Carbono/metabolismo , Ecosistema , Concentración de Iones de Hidrógeno , Acidificación de los Océanos , Agua de Mar/microbiología , Bacterias/metabolismo , Hidrocarburos/metabolismo , Fitoplancton/metabolismo
2.
Environ Microbiol ; 22(8): 3049-3065, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32216020

RESUMEN

Most of the oil in low temperature, non-uplifted reservoirs is biodegraded due to millions of years of microbial activity, including via methanogenesis from crude oil. To evaluate stimulating additional methanogenesis in already heavily biodegraded oil reservoirs, oil sands samples were amended with nutrients and electron acceptors, but oil sands bitumen was the only organic substrate. Methane production was monitored for over 3000 days. Methanogenesis was observed in duplicate microcosms that were unamended, amended with sulfate or that were initially oxic, however methanogenesis was not observed in nitrate-amended controls. The highest rate of methane production was 0.15 µmol CH4 g-1 oil d-1 , orders of magnitude lower than other reports of methanogenesis from lighter crude oils. Methanogenic Archaea and several potential syntrophic bacterial partners were detected following the incubations. GC-MS and FTICR-MS revealed no significant bitumen alteration for any specific compound or compound class, suggesting that the very slow methanogenesis observed was coupled to bitumen biodegradation in an unspecific manner. After 3000 days, methanogenic communities were amended with benzoate resulting in methanogenesis rates that were 110-fold greater. This suggests that oil-to-methane conversion is limited by the recalcitrant nature of oil sands bitumen, not the microbial communities resident in heavy oil reservoirs.


Asunto(s)
Bacterias/metabolismo , Biodegradación Ambiental , Reactores Biológicos/microbiología , Euryarchaeota/metabolismo , Metano/metabolismo , Petróleo/metabolismo , Anaerobiosis/fisiología , Crecimiento Quimioautotrófico/fisiología , Hidrocarburos/química , Microbiota , Yacimiento de Petróleo y Gas , Sulfatos/metabolismo
3.
Mar Pollut Bull ; 135: 205-215, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30301032

RESUMEN

A distinctive feature of the Deepwater Horizon (DwH) oil spill was the formation of significant quantities of marine oil snow (MOS), for which the mechanism(s) underlying its formation remain unresolved. Here, we show that Alteromonas strain TK-46(2), Pseudoalteromonas strain TK-105 and Cycloclasticus TK-8 - organisms that became enriched in sea surface oil slicks during the spill - contributed to the formation of MOS and/or dispersion of the oil. In roller-bottle incubations, Alteromonas cells and their produced EPS yielded MOS, whereas Pseudoalteromonas and Cycloclasticus did not. Interestingly, the Cycloclasticus strain was able to degrade n-alkanes concomitantly with aromatics within the complex oil mixture, which is atypical for members of this genus. Our findings, for the first time, provide direct evidence on the hydrocarbon-degrading capabilities for these bacteria enriched during the DwH spill, and that bacterial cells of certain species and their produced EPS played a direct role in MOS formation.


Asunto(s)
Bacterias/metabolismo , Sedimentos Geológicos/microbiología , Contaminación por Petróleo , Agua de Mar/microbiología , Alcanos/metabolismo , Alteromonas/fisiología , Biodegradación Ambiental , Emulsiones/química , Golfo de México , Hidrocarburos/metabolismo , Petróleo/metabolismo
4.
Environ Microbiol ; 19(7): 2843-2861, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28585283

RESUMEN

Phytoplankton have been shown to harbour a diversity of hydrocarbonoclastic bacteria (HCB), yet it is not understood how these phytoplankton-associated HCB would respond in the event of an oil spill at sea. Here, we assess the diversity and dynamics of the bacterial community associated with a natural population of marine phytoplankton under oil spill-simulated conditions, and compare it to that of the free-living (non phytoplankton-associated) bacterial community. While the crude oil severely impacted the phytoplankton population and was likely conducive to marine oil snow formation, analysis of the MiSeq-derived 16S rRNA data revealed dramatic and differential shifts in the oil-amended communities that included blooms of recognized HCB (e.g., Thalassospira, Cycloclasticus), including putative novel phyla, as well as other groups with previously unqualified oil-degrading potential (Olleya, Winogradskyella, and members of the inconspicuous BD7-3 phylum). Notably, the oil biodegradation potential of the phytoplankton-associated community exceeded that of the free-living community, and it showed a preference to degrade substituted and non-substituted polycyclic aromatic hydrocarbons. Our study provides evidence of compartmentalization of hydrocarbon-degrading capacity in the marine water column, wherein HCB associated with phytoplankton are better tuned to degrading crude oil hydrocarbons than that by the community of planktonic free-living bacteria.


Asunto(s)
Biodegradación Ambiental , Flavobacteriaceae/metabolismo , Petróleo/metabolismo , Fitoplancton/microbiología , Piscirickettsiaceae/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Rhodospirillaceae/metabolismo , Flavobacteriaceae/genética , Contaminación por Petróleo , Piscirickettsiaceae/genética , ARN Ribosómico 16S/genética , Rhodospirillaceae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA