Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Europace ; 21(6): 981-989, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30753421

RESUMEN

AIMS: Action potential duration (APD) alternans is an established precursor or arrhythmia and sudden cardiac death. Important differences in fundamental electrophysiological properties relevant to arrhythmia exist between experimental models and the diseased in vivo human heart. To investigate mechanisms of APD alternans using a novel approach combining intact heart and cellular cardiac electrophysiology in human in vivo. METHODS AND RESULTS: We developed a novel approach combining intact heart electrophysiological mapping during cardiac surgery with rapid on-site data analysis to guide myocardial biopsies for laboratory analysis, thereby linking repolarization dynamics observed at the organ level with underlying ion channel expression. Alternans-susceptible and alternans-resistant regions were identified by an incremental pacing protocol. Biopsies from these sites (n = 13) demonstrated greater RNA expression in Calsequestrin (CSQN) and Ryanodine (RyR) and ion channels underlying IK1 and Ito at alternans-susceptible sites. Electrical restitution properties (n = 7) showed no difference between alternans-susceptible and resistant sites, whereas spatial gradients of repolarization were greater in alternans-susceptible than in alternans-resistant sites (P = 0.001). The degree of histological fibrosis between alternans-susceptible and resistant sites was equivalent. Mathematical modelling of these changes indicated that both CSQN and RyR up-regulation are key determinants of APD alternans. CONCLUSION: Combined intact heart and cellular electrophysiology show that regions of myocardium in the in vivo human heart exhibiting APD alternans are associated with greater expression of CSQN and RyR and show no difference in restitution properties compared to non-alternans regions. In silico modelling identifies up-regulation and interaction of CSQN with RyR as a major mechanism underlying APD alternans.


Asunto(s)
Arritmias Cardíacas/fisiopatología , Técnicas Electrofisiológicas Cardíacas , Sistema de Conducción Cardíaco/fisiopatología , Potenciales de Acción , Biopsia , Calsecuestrina/metabolismo , Femenino , Humanos , Canales Iónicos/metabolismo , Masculino , Persona de Mediana Edad , Rianodina/metabolismo
2.
Heart Rhythm ; 16(2): 298-307, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30170229

RESUMEN

Cardiac arrhythmias are a leading cause of cardiovascular death. It has long been accepted that life-threatening cardiac arrhythmias (ventricular tachycardia, ventricular fibrillation, and sudden cardiac death) are more likely to occur in the morning after waking. It is perhaps less well recognized that there is a circadian rhythm in cardiac pacemaking and other electrophysiological properties of the heart. In addition, there is a circadian rhythm in other arrhythmias, for example, bradyarrhythmias and supraventricular arrhythmias. Two mechanisms may underlie this finding: (1) a central circadian clock in the suprachiasmatic nucleus in the hypothalamus may directly affect the electrophysiology of the heart and arrhythmogenesis via various neurohumoral factors, particularly the autonomic nervous system; or (2) a local circadian clock in the heart itself (albeit under the control of the central clock) may drive a circadian rhythm in the expression of ion channels in the heart, which in turn varies arrhythmic substrate. This review summarizes the current understanding of the circadian rhythm in cardiac electrophysiology, arrhythmogenesis, and the underlying molecular mechanisms.


Asunto(s)
Arritmias Cardíacas/fisiopatología , Ritmo Circadiano/fisiología , Técnicas Electrofisiológicas Cardíacas/métodos , Sistema de Conducción Cardíaco/fisiopatología , Canales Iónicos/metabolismo , Arritmias Cardíacas/metabolismo , Sistema Nervioso Autónomo/metabolismo , Sistema Nervioso Autónomo/fisiopatología , Humanos
3.
Artículo en Inglés | MEDLINE | ID: mdl-27979911

RESUMEN

BACKGROUND: Heart block is associated with pulmonary hypertension, and the aim of the study was to test the hypothesis that the heart block is the result of a change in the ion channel transcriptome of the atrioventricular (AV) node. METHODS AND RESULTS: The most commonly used animal model of pulmonary hypertension, the monocrotaline-injected rat, was used. The functional consequences of monocrotaline injection were determined by echocardiography, ECG recording, and electrophysiological experiments on the Langendorff-perfused heart and isolated AV node. The ion channel transcriptome was measured by quantitative PCR, and biophysically detailed computer modeling was used to explore the changes observed. After monocrotaline injection, echocardiography revealed the pattern of pulmonary artery blood flow characteristic of pulmonary hypertension and right-sided hypertrophy and failure; the Langendorff-perfused heart and isolated AV node revealed dysfunction of the AV node (eg, 50% incidence of heart block in isolated AV node); and quantitative PCR revealed a widespread downregulation of ion channel and related genes in the AV node (eg, >50% downregulation of Cav1.2/3 and HCN1/2/4 channels). Computer modeling predicted that the changes in the transcriptome if translated into protein and function would result in heart block. CONCLUSIONS: Pulmonary hypertension results in a derangement of the ion channel transcriptome in the AV node, and this is the likely cause of AV node dysfunction in this disease.


Asunto(s)
Nodo Atrioventricular/metabolismo , Bloqueo Cardíaco/metabolismo , Hipertensión Pulmonar/metabolismo , Canales Iónicos/metabolismo , Transcriptoma , Animales , Nodo Atrioventricular/fisiopatología , Modelos Animales de Enfermedad , Regulación hacia Abajo , Ecocardiografía , Electrocardiografía , Técnicas Electrofisiológicas Cardíacas , Bloqueo Cardíaco/etiología , Bloqueo Cardíaco/fisiopatología , Hipertensión Pulmonar/complicaciones , Hipertensión Pulmonar/fisiopatología , Canales Iónicos/genética , Masculino , Monocrotalina , Reacción en Cadena de la Polimerasa , Ratas , Ratas Wistar
4.
J Cardiovasc Electrophysiol ; 25(2): 197-207, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24118558

RESUMEN

INTRODUCTION: Since the discovery of the link that exists between drug-induced hERG inhibition and Torsade de Pointes (TdP), extreme attention has been given to avoid new drugs inhibiting this channel. hERG inhibition is routinely screened for in new drugs and, typically, IC50 values are compared to projected plasma concentrations to define a safety margin. METHODS AND RESULTS: We aimed to show that drugs with similar hERG potency are not uniformly pro-arrhythmic-this depends on the drug binding kinetics and mode of action (trapped or not) rather than the IC50 value only. We used a mathematical model of hERG and its related encoded current IKr to simulate drug binding in different configurations. Expression systems mimicking the screening process were first investigated. hERG model was then incorporated into a canine action potential (AP) and tissue model to study the impact of drug binding configurations on AP and pseudo-ECG (QT interval prolongation). Our data show that: (1) trapped and not trapped configurations and different binding kinetics could be identified during hERG screening; (2) slow binding, not trapped drugs, induced less AP prolongation and minimal QT interval prolongation (4.7%) at a concentration equal to the IC50 whereas maximal pro-arrhythmic risk was observed for trapped drugs at the same concentration (QT interval prolongation, 23.1%). CONCLUSION: Our study demonstrates the need for screening for hERG binding configurations rather than potency alone. It also demonstrates the potential link between hERG, drug mode of action and TdP, and the need to question the current regulatory guidance.


Asunto(s)
Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/metabolismo , Bloqueadores de los Canales de Calcio/administración & dosificación , Bloqueadores de los Canales de Calcio/efectos adversos , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Modelos Cardiovasculares , Animales , Sitios de Unión , Simulación por Computador , Perros , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/metabolismo , Humanos , Cinética , Modelos Químicos , Unión Proteica , Equivalencia Terapéutica
5.
Circ Res ; 102(8): 975-85, 2008 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-18309098

RESUMEN

Because of its complexity, the atrioventricular node (AVN), remains 1 of the least understood regions of the heart. The aim of the study was to construct a detailed anatomic model of the AVN and relate it to AVN function. The electric activity of a rabbit AVN preparation was imaged using voltage-dependent dye. The preparation was then fixed and sectioned. Sixty-five sections at 60- to 340-microm intervals were stained for histology and immunolabeled for neurofilament (marker of nodal tissue) and connexin43 (gap junction protein). This revealed multiple structures within and around the AVN, including transitional tissue, inferior nodal extension, penetrating bundle, His bundle, atrial and ventricular muscle, central fibrous body, tendon of Todaro, and valves. A 3D anatomically detailed mathematical model (approximately 13 million element array) of the AVN and surrounding atrium and ventricle, incorporating all cell types, was constructed. Comparison of the model with electric activity recorded in experiments suggests that the inferior nodal extension forms the slow pathway, whereas the transitional tissue forms the fast pathway into the AVN. In addition, it suggests the pacemaker activity of the atrioventricular junction originates in the inferior nodal extension. Computer simulation of the propagation of the action potential through the anatomic model shows how, because of the complex structure of the AVN, reentry (slow-fast and fast-slow) can occur. In summary, a mathematical model of the anatomy of the AVN has been generated that allows AVN conduction to be explored.


Asunto(s)
Nodo Atrioventricular/anatomía & histología , Nodo Atrioventricular/fisiología , Simulación por Computador , Imagenología Tridimensional/métodos , Modelos Cardiovasculares , Potenciales de Acción , Animales , Técnicas Electrofisiológicas Cardíacas , Conejos
6.
Circ Res ; 93(11): 1102-10, 2003 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-14563715

RESUMEN

During failure of the sinoatrial node, the heart can be driven by an atrioventricular (AV) junctional pacemaker. The position of the leading pacemaker site during AV junctional rhythm is debated. In this study, we present evidence from high-resolution fluorescent imaging of electrical activity in rabbit isolated atrioventricular node (AVN) preparations that, in the majority of cases (11 out of 14), the AV junctional rhythm originates in the region extending from the AVN toward the coronary sinus along the tricuspid valve (posterior nodal extension, PNE). Histological and immunohistochemical investigation showed that the PNE has the same morphology and unique pattern of expression of neurofilament160 (NF160) and connexins (Cx40, Cx43, and Cx45) as the AVN itself. Block of the pacemaker current, If, by 2 mmol/L Cs+ increased the AV junctional rhythm cycle length from 611+/-84 to 949+/-120 ms (mean+/-SD, n=6, P<0.001). Immunohistochemical investigation showed that the principal If channel protein, HCN4, is abundant in the PNE. As well as the AV junctional rhythm, the PNE described in this study may also be involved in the slow pathway of conduction into the AVN as well as AVN reentry, and the predominant lack of expression of Cx43 as well as the presence of Cx45 in the PNE shown could help explain its slow conduction.


Asunto(s)
Nodo Atrioventricular/fisiología , Frecuencia Cardíaca , Periodicidad , Animales , Función Atrial/efectos de los fármacos , Función Atrial/fisiología , Nodo Atrioventricular/efectos de los fármacos , Nodo Atrioventricular/metabolismo , Relojes Biológicos/efectos de los fármacos , Relojes Biológicos/fisiología , Mapeo del Potencial de Superficie Corporal , Cesio/farmacología , Conexina 43/análisis , Conexinas/biosíntesis , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Técnicas Electrofisiológicas Cardíacas , Atrios Cardíacos/metabolismo , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/fisiología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Técnicas In Vitro , Canales Iónicos/biosíntesis , Proteínas Musculares/biosíntesis , Proteínas de Neurofilamentos/biosíntesis , Óptica y Fotónica , Canales de Potasio , Compuestos de Piridinio , Conejos , Nodo Sinoatrial/fisiología , Proteína alfa-5 de Unión Comunicante
7.
Circulation ; 107(2): 285-9, 2003 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-12538429

RESUMEN

BACKGROUND: Enhanced sympathetic activity facilitates complex ventricular arrhythmias and fibrillation. The restitution properties of action potential duration (APD) are important determinants of electrical stability in the myocardium. Steepening of the slope of APD restitution has been shown to promote wave break and ventricular fibrillation. The effect of adrenergic stimulation on APD restitution in humans is unknown. METHODS AND RESULTS: Monophasic action potentials were recorded from the right ventricular septum in 18 patients. Standard APD restitution curves were constructed at 3 basic drive cycle lengths (CLs) of 600, 500, and 400 ms under resting conditions and during infusion of isoprenaline (15 patients) or adrenaline (3 patients). The maximum slope of the restitution curves was measured by piecewise linear regression segments of sequential 40-ms ranges of diastolic intervals in steps of 10 ms. Under control conditions, the maximum slope was steeper at longer basic CLs; eg, mean values for the maximum slope were 1.053+/-0.092 at CL 600 ms and 0.711+/-0.049 at CL 400 ms (+/-SEM). Isoprenaline increased the steepness of the maximum slope of APD restitution, eg, from a maximum slope of 0.923+/-0.058 to a maximum slope of 1.202+/-0.121 at CL 500 ms. The effect of isoprenaline was greater at the shorter basic CLs. A similar overall effect was observed with adrenaline. CONCLUSIONS: The adrenergic agonists isoprenaline and adrenaline increased the steepness of the slope of the APD restitution curve in humans over a wide range of diastolic intervals. These results may relate to the known effects of adrenergic stimulation in facilitating ventricular fibrillation.


Asunto(s)
Potenciales de Acción/fisiología , Agonistas alfa-Adrenérgicos/farmacología , Agonistas Adrenérgicos beta/farmacología , Técnicas Electrofisiológicas Cardíacas , Función Ventricular , Potenciales de Acción/efectos de los fármacos , Adulto , Anciano , Diástole/fisiología , Epinefrina/farmacología , Femenino , Ventrículos Cardíacos/efectos de los fármacos , Humanos , Isoproterenol/farmacología , Masculino , Persona de Mediana Edad , Procesamiento de Señales Asistido por Computador
8.
J Cardiovasc Electrophysiol ; 13(8): 809-12, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12212702

RESUMEN

INTRODUCTION: A novel sustained inward Na+ current i(sv), which sensitive to Ca2+-antagonists and potentiated by beta-adrenergic stimulation, has been described in pacemaker cells of rabbit, guinea pig, and rat sinoatrial node, as well as rabbit AV node. Although i(st) has been suggested to be an important pacemaker current, this has never been tested experimentally because of the lack of a specific blocker. In this study, we address the role of i(st) in the pacemaker activity of the sinoatrial node cell using computer models. METHODS AND RESULTS: The newly developed models of Zhang et al. for peripheral and central rabbit sinoatrial node cells and models of Noble and Noble, Demir et al., Wilders et al., and Dokos et al. for typical rabbit sinoatrial node cells were modified to incorporate equations for i(st). The conductance g(st) was chosen to give a current density-voltage relationship consistent with experimental data. In the models of Zhang et al. (periphery), Noble and Noble, and Dokos et al., in which i(st) was smaller or about the same amplitude as other inward currents, i(st) increased the pacemaking rate by 0.6%, 2.2%, and 0.8%, respectively. In the models of Zhang et al. (center), Demir et al., and Wilders et al., in which i(st) was larger than some other inward ionic currents, i(st) increased the pacemaking rate by 7%, 20%, and 14%, respectively. CONCLUSION: i(st) has the potential to be a regulator of pacemaker activity, although its importance will depend on the amplitude of i(st) relative to the amplitude of other inward currents involved in pacemaker activity.


Asunto(s)
Marcapaso Artificial , Nodo Sinoatrial/fisiología , Nodo Sinoatrial/cirugía , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Antagonistas Adrenérgicos beta/farmacología , Animales , Nodo Atrioventricular/fisiología , Nodo Atrioventricular/cirugía , Relojes Biológicos/efectos de los fármacos , Relojes Biológicos/fisiología , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/efectos de los fármacos , Canales de Calcio Tipo L/fisiología , Canales de Calcio Tipo T/efectos de los fármacos , Canales de Calcio Tipo T/fisiología , Simulación por Computador , Conductividad Eléctrica , Técnicas Electrofisiológicas Cardíacas , Cobayas , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Modelos Animales , Modelos Cardiovasculares , Conejos , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA