Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Appl Bio Mater ; 4(2): 1852-1862, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35014531

RESUMEN

During wound healing, a complex cascade of cellular and molecular events occurs, which is governed by topographical and biochemical cues. Therefore, optimal tissue repair requires scaffold materials with versatile structural and biochemical features. Nanoporous anodic aluminum oxide (AAO) membranes exhibit good biocompatibility along with customizable nanotopography and antimicrobial properties, which has brought them into the focus of wound treatment. However, despite their good permeability, such bioinert ceramic nanopores cannot actively promote cell growth as they lack biochemical cues to support specific ligand-receptor interactions. Therefore, we modified AAO nanopores with the biochemical features of collagen nanofibers or amino groups provided by silanization with (3-aminopropyl)triethoxysilane (APTES) to design a permeable scaffold material that can additionally promote cell adhesion. Viability assays revealed that the metabolic activity of both 3T3 fibroblasts and HaCaT keratinocytes on bare and silanized AAO pores was comparable to glass controls until 72 h. Interestingly, both cell types showed a reduced proliferation on AAO with collagen nanofibers. Nevertheless, scanning electron and fluorescence microscopy revealed that 3T3 fibroblasts exhibited a well-spread morphology with filopodia attached to the nanoporous surface of the underlying AAO membranes or nanofibrous collagen networks, thus indicating a close interaction with the composites. Keratinocytes, although growing in clusters on bare and APTES-modified AAO, also adhered well on collagen-modified AAO membranes. When in contact with Escherichia coli suspensions for 20 h, the AAO membranes successfully prevented bacteria penetration irrespective of the biochemical functionalization. In summary, both functionalization strategies have high potential to specifically control molecular signaling and cell migration to further develop alumina nanopores for wound healing.


Asunto(s)
Óxido de Aluminio/química , Materiales Biocompatibles/química , Fibroblastos/química , Queratinocitos/química , Nanofibras/química , Nanoporos , Células 3T3 , Animales , Línea Celular , Colágeno/química , Humanos , Ensayo de Materiales , Ratones , Tamaño de la Partícula
2.
Nanotechnology ; 23(49): 495303, 2012 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-23150042

RESUMEN

The design of electrode interfaces has a strong impact on cell-based bioelectronic applications. We present a new type of microelectrode array chip featuring a nanoporous alumina interface. The chip is fabricated in a combination of top-down and bottom-up processes using state-of-the-art clean room technology and self-assembled generation of nanopores by aluminum anodization. The electrode characteristics are investigated in phosphate buffered saline as well as under cell culture conditions. We show that the modified microelectrodes exhibit decreased impedance compared to planar microelectrodes, which is caused by a nanostructuring effect of the underlying gold during anodization. The stability and biocompatibility of the device are demonstrated by measuring action potentials from cardiomyocyte-like cells growing on top of the chip. Cross sections of the cell-surface interface reveal that the cell membrane seals the nanoporous alumina layer without bending into the sub-50 nm apertures. The nanoporous microelectrode array device may be used as a platform for combining extracellular recording of cell activity with stimulating topographical cues.


Asunto(s)
Potenciales de Acción/fisiología , Óxido de Aluminio/química , Técnicas Biosensibles/instrumentación , Nanopartículas del Metal/química , Microelectrodos , Miocitos Cardíacos/fisiología , Análisis de Matrices Tisulares/instrumentación , Animales , Bioensayo/instrumentación , Línea Celular , Células Cultivadas , Conductometría/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA