Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Metab ; 35(5): 786-806.e13, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37075752

RESUMEN

Autophagy represents a key regulator of aging and metabolism in sensing energy deprivation. We find that fasting in mice activates autophagy in the liver paralleled by activation of hypothalamic AgRP neurons. Optogenetic and chemogenetic activation of AgRP neurons induces autophagy, alters phosphorylation of autophagy regulators, and promotes ketogenesis. AgRP neuron-dependent induction of liver autophagy relies on NPY release in the paraventricular nucleus of the hypothalamus (PVH) via presynaptic inhibition of NPY1R-expressing neurons to activate PVHCRH neurons. Conversely, inhibiting AgRP neurons during energy deprivation abrogates induction of hepatic autophagy and rewiring of metabolism. AgRP neuron activation increases circulating corticosterone concentrations, and reduction of hepatic glucocorticoid receptor expression attenuates AgRP neuron-dependent activation of hepatic autophagy. Collectively, our study reveals a fundamental regulatory principle of liver autophagy in control of metabolic adaptation during nutrient deprivation.


Asunto(s)
Hipotálamo , Neuronas , Ratones , Animales , Proteína Relacionada con Agouti/metabolismo , Neuronas/metabolismo , Hipotálamo/metabolismo , Hígado/metabolismo , Nutrientes
2.
Cell Rep ; 25(2): 383-397.e10, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30304679

RESUMEN

Mitochondrial oxidative phosphorylation (OXPHOS) and substrate utilization critically regulate the function of hypothalamic proopiomelanocortin (POMC)-expressing neurons. Here, we demonstrate that inactivation of apoptosis-inducing factor (AIF) in POMC neurons mildly impairs mitochondrial respiration and decreases firing of POMC neurons in lean mice. In contrast, under diet-induced obese conditions, POMC-Cre-specific inactivation of AIF prevents obesity-induced silencing of POMC neurons, translating into improved glucose metabolism, improved leptin, and insulin sensitivity, as well as increased energy expenditure in AIFΔPOMC mice. On a cellular level, AIF deficiency improves mitochondrial morphology, facilitates the utilization of fatty acids for mitochondrial respiration, and increases reactive oxygen species (ROS) formation in POMC neurons from obese mice, ultimately leading to restored POMC firing upon HFD feeding. Collectively, partial impairment of mitochondrial function shifts substrate utilization of POMC neurons from glucose to fatty acid metabolism and restores their firing properties, resulting in improved systemic glucose and energy metabolism in obesity.


Asunto(s)
Ácidos Grasos/metabolismo , Glucosa/metabolismo , Homeostasis , Mitocondrias/patología , Neuronas/metabolismo , Obesidad/prevención & control , Fosforilación Oxidativa , Proopiomelanocortina/metabolismo , Animales , Factor Inductor de la Apoptosis/fisiología , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético , Intolerancia a la Glucosa , Hipotálamo/metabolismo , Hipotálamo/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Mitocondrias/metabolismo , Neuronas/patología , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología
3.
Elife ; 72018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30230471

RESUMEN

Hypothalamic neurons respond to nutritional cues by altering gene expression and neuronal excitability. The mechanisms that control such adaptive processes remain unclear. Here we define populations of POMC neurons in mice that are activated or inhibited by insulin and thereby repress or inhibit hepatic glucose production (HGP). The proportion of POMC neurons activated by insulin was dependent on the regulation of insulin receptor signaling by the phosphatase TCPTP, which is increased by fasting, degraded after feeding and elevated in diet-induced obesity. TCPTP-deficiency enhanced insulin signaling and the proportion of POMC neurons activated by insulin to repress HGP. Elevated TCPTP in POMC neurons in obesity and/or after fasting repressed insulin signaling, the activation of POMC neurons by insulin and the insulin-induced and POMC-mediated repression of HGP. Our findings define a molecular mechanism for integrating POMC neural responses with feeding to control glucose metabolism.


Asunto(s)
Glucosa/metabolismo , Insulina/farmacología , Plasticidad Neuronal/efectos de los fármacos , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , Animales , Humanos , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/farmacología , Hipotálamo/citología , Insulina/administración & dosificación , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Plasticidad Neuronal/genética , Proopiomelanocortina/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 2/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 2/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo
4.
Cell Rep ; 19(2): 267-280, 2017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28402851

RESUMEN

Interleukin (IL)-6 engages similar signaling mechanisms to leptin. Here, we find that central application of IL-6 in mice suppresses feeding and improves glucose tolerance. In contrast to leptin, whose action is attenuated in obesity, the ability of IL-6 to suppress feeding is enhanced in obese mice. IL-6 suppresses feeding in the absence of neuronal IL-6-receptor (IL-6R) expression in hypothalamic or all forebrain neurons of mice. Conversely, obese mice exhibit increased soluble IL-6R levels in the cerebrospinal fluid. Blocking IL-6 trans-signaling in the CNS abrogates the ability of IL-6 to suppress feeding. Furthermore, gp130 expression is enhanced in the paraventricular nucleus of the hypothalamus (PVH) of obese mice, and deletion of gp130 in the PVH attenuates the beneficial central IL-6 effects on metabolism. Collectively, these experiments indicate that IL-6 trans-signaling is enhanced in the CNS of obese mice, allowing IL-6 to exert its beneficial metabolic effects even under conditions of leptin resistance.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales/genética , Receptor gp130 de Citocinas/genética , Interleucina-6/genética , Obesidad/genética , Animales , Receptor gp130 de Citocinas/biosíntesis , Metabolismo Energético/genética , Glucosa/metabolismo , Humanos , Hipotálamo/metabolismo , Hipotálamo/patología , Interleucina-6/metabolismo , Ratones , Ratones Obesos , Neuronas/metabolismo , Neuronas/patología , Obesidad/metabolismo , Obesidad/fisiopatología , Prosencéfalo/metabolismo , Prosencéfalo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA