RESUMEN
DNA repair pathways, cell cycle checkpoints, and redox protection systems are essential factors for securing genomic stability. The aim of the present study was to analyze the effect of Ilex paraguariensis (Ip) infusion and one of its polyphenolic components rutin on cellular and molecular damage induced by ionizing radiation. Ip is a beverage drank by most inhabitants of Argentina, Paraguay, Southern Brazil, and Uruguay. The yeast Saccharomyces cerevisiae (SC7Klys 2-3) was used as the eukaryotic model. Exponentially growing cells were exposed to gamma rays (γ) in the presence or absence of Ip or rutin. The concentrations used simulated those found in the habitual infusion. Surviving fractions, mutation frequency, and DNA double-strand breaks (DSB) were determined after treatments. A significant increase in surviving fractions after gamma irradiation was observed following combined exposure to γ+R, or γ+Ip. Upon these concomitant treatments, mutation and DSB frequency decreased significantly. In the mutant strain deficient in MEC1, a significant increase in γ sensitivity and a low effect of rutin on γ-induced chromosomal fragmentation was observed. Results were interpreted in the framework of a model of interaction between radiation-induced free radicals, DNA repair pathways, and checkpoint controls, where the DNA damage that induced activation of MEC1 nodal point of the network could be modulated by Ip components including rutin. Furthermore, ionizing radiation-induced redox cascades can be interrupted by rutin potential and other protectors contained in Ip.
Asunto(s)
Antimutagênicos/farmacología , Ilex paraguariensis/química , Extractos Vegetales/farmacología , Rutina/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/efectos de la radiación , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Células Cultivadas , Cromatografía Liquida , Roturas del ADN de Doble Cadena , Reparación del ADN , ADN de Hongos/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Rayos gamma , Espectrometría de Masas , Mutagénesis , Tasa de Mutación , Protección Radiológica/métodos , Reproducibilidad de los ResultadosRESUMEN
DNA repair pathways, cell cycle checkpoints, and redox protection systems are essential factors for securing genomic stability. The aim of the present study was to analyze the effect of Ilex paraguariensis (Ip) infusion and one of its polyphenolic components rutin on cellular and molecular damage induced by ionizing radiation. Ip is a beverage drank by most inhabitants of Argentina, Paraguay, Southern Brazil, and Uruguay. The yeast Saccharomyces cerevisiae (SC7Klys 2-3) was used as the eukaryotic model. Exponentially growing cells were exposed to gamma rays (γ) in the presence or absence of Ip or rutin. The concentrations used simulated those found in the habitual infusion. Surviving fractions, mutation frequency, and DNA double-strand breaks (DSB) were determined after treatments. A significant increase in surviving fractions after gamma irradiation was observed following combined exposure to γ+R, or γ+Ip. Upon these concomitant treatments, mutation and DSB frequency decreased significantly. In the mutant strain deficient in MEC1, a significant increase in γ sensitivity and a low effect of rutin on γ-induced chromosomal fragmentation was observed. Results were interpreted in the framework of a model of interaction between radiation-induced free radicals, DNA repair pathways, and checkpoint controls, where the DNA damage that induced activation of MEC1 nodal point of the network could be modulated by Ip components including rutin. Furthermore, ionizing radiation-induced redox cascades can be interrupted by rutin potential and other protectors contained in Ip.
Asunto(s)
Rutina/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/efectos de la radiación , Extractos Vegetales/farmacología , Antimutagênicos/farmacología , Ilex paraguariensis/química , Protección Radiológica/métodos , Espectrometría de Masas , ADN de Hongos/efectos de la radiación , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Células Cultivadas , Reproducibilidad de los Resultados , Cromatografía Liquida , Mutagénesis , Reparación del ADN , Relación Dosis-Respuesta en la Radiación , Roturas del ADN de Doble Cadena , Tasa de Mutación , Rayos gammaRESUMEN
Ilex paraguariensis dried and minced leaves are made into a brewed tea, prepared in a sui generis manner by large populations in South America, having evolved from a tea drunk by the Guarani ethnic group to a beverage that has a social and almost ritualistic role in some South American modern societies. It is used both as a source of caffeine, in lieu or in parallel with tea and coffee, but also as a therapeutic agent for its alleged pharmacological properties. Although with some exceptions, research on biomedical properties of this herb has had a late start and strongly lags behind the impressive amount of literature on green tea and coffee. However, in the past 15 years, there was a several-fold increase in the literature studying Ilex paraguariensis properties showing effects such as antioxidant properties in chemical models and ex vivo lipoprotein studies, vaso-dilating and lipid reduction properties, antimutagenic effects, controversial association with oropharyngeal cancer, anti-glycation effects and weight reduction properties. Lately, promising results from human intervention studies have surfaced and the literature offers several developments on this area. The aim of this review is to provide a concise summary of the research published in the past three years, with an emphasis on translational studies, inflammation and lipid metabolism. Ilex paraguariensis reduces LDL-cholesterol levels in humans with Ilex paraguariensis dyslipoproteinemia and the effect is synergic with that of statins. Plasma antioxidant capacity as well as expression of antioxidant enzymes is positively modulated by intervention with Ilex paraguariensis in human cohorts. A review on the evidence implicating Ilex paraguariensis heavy consumption with some neoplasias show data that are inconclusive but indicate that contamination with alkylating agents during the drying process of the leaves should be avoided. On the other hand, several new studies confirm the antimutagenic effects of Ilex paraguariensis in different models, from DNA double breaks in cell culture models to mice studies. Novel interesting work has emerged showing significant effect on weight reduction both in mice and in rat models. Some mechanisms involved are inhibition of pancreatic lipase, activation of AMPK and uncoupling of electron transport. Intervention studies in animals have provided strong evidence of anti-inflammatory effects of Ilex paraguariensis, notably protecting cigarette-induced lung inflammation acting on macrophage migration and inactivating matrix-metalloproteinase. Research on the effects of Ilex paraguariensis in health and disease has confirmed its antioxidant, anti-inflammatory, antimutagenic and lipid-lowering activities. Although we are still waiting for the double-blind, randomized prospective clinical trial, the evidence seems to provide support for beneficial effects of mate drinking on chronic diseases with inflammatory component and lipid metabolism disorders.