Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Vet Intern Med ; 34(5): 2036-2047, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32926463

RESUMEN

BACKGROUND: Lymphoma (LSA) is a common malignancy in dogs. Epigenetic changes are linked to LSA pathogenesis and poor prognosis in humans, and LSA pathogenesis in dogs. Sulforaphane (SFN), an epigenetic-targeting compound, has recently gained interest in relation to cancer prevention and therapy. OBJECTIVE: Examine the impact of oral supplementation with SFN on the lymph node proteome of dogs with multicentric LSA. ANIMALS: Seven client-owned dogs with multicentric LSA. METHODS: Prospective, nonrandomized, noncontrolled study in treatment-naïve dogs with intermediate or large cell multicentric LSA. Lymph node cell aspirates were obtained before and after 7 days of oral supplementation with SFN, and analyzed via label-free mass spectrometry, immunoblots, and Gene Set Enrichment Analysis. RESULTS: There was no clinical response and no adverse events attributed to SFN. For individual dogs, the expression of up to 650 proteins changed by at least 2-fold (range, 2-100) after supplementation with SFN. When all dogs where analyzed together, 14 proteins were significantly downregulated, and 10 proteins were significantly upregulated after supplementation with SFN (P < .05). Proteins and gene sets impacted by SFN were commonly involved in immunity, response to oxidative stress, gene transcription, apoptosis, protein transport, maturation and ubiquitination. CONCLUSIONS AND CLINICAL IMPORTANCE: Sulforaphane is associated with major changes in the proteome of neoplastic lymphocytes in dogs.


Asunto(s)
Enfermedades de los Perros , Linfoma , Animales , Suplementos Dietéticos , Enfermedades de los Perros/tratamiento farmacológico , Perros , Isotiocianatos , Ganglios Linfáticos , Linfoma/tratamiento farmacológico , Linfoma/veterinaria , Estudios Prospectivos , Proteoma , Sulfóxidos
2.
Small ; 16(18): e1906936, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32250034

RESUMEN

Endometriosis is a painful disorder where endometrium-like tissue forms lesions outside of the uterine cavity. Intraoperative identification and removal of these lesions are difficult. This study presents a nanoplatform that concurrently delineates and ablates endometriosis tissues using real-time near-infrared (NIR) fluorescence and photothermal therapy (PTT). The nanoplatform consists of a dye, silicon naphthalocyanine (SiNc), capable of both NIR fluorescence imaging and PTT, and a polymeric nanoparticle as a SiNc carrier to endometriosis tissue following systemic administration. To achieve high contrast during fluorescence imaging of endometriotic lesions, nanoparticles are constructed to be non-fluorescent prior to internalization by endometriosis cells. In vitro studies confirm that these nanoparticles activate the fluorescence signal following internalization in macaque endometrial stromal cells and ablate them by increasing cellular temperature to 53 ° C upon interaction with NIR light. To demonstrate in vivo efficiency of the nanoparticles, biopsies of endometrium and endometriosis from rhesus macaques are transplanted into immunodeficient mice. Imaging with the intraoperative Fluobeam 800 system reveals that 24 h following intravenous injection, nanoparticles efficiently accumulate in, and demarcate, endometriotic grafts with fluorescence. Finally, the nanoparticles increase the temperature of endometriotic grafts up to 47 °C upon exposure to NIR light, completely eradicating them after a single treatment.


Asunto(s)
Endometriosis , Hipertermia Inducida , Nanopartículas , Fototerapia , Animales , Endometriosis/diagnóstico por imagen , Endometriosis/terapia , Femenino , Humanos , Macaca mulatta , Ratones , Imagen Óptica
3.
J Vasc Interv Radiol ; 30(9): 1480-1486.e2, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31202675

RESUMEN

PURPOSE: To assess selective accumulation of biodegradable nanoparticles within hepatic tumors after transarterial delivery for in vivo localization and combinatorial phototherapy. MATERIALS AND METHODS: A VX2 hepatic tumor model was used in New Zealand white rabbits. Transarterial delivery of silicon naphthalocyanine biodegradable nanoparticles was performed using a microcatheter via the proper hepatic artery. Tumors were exposed via laparotomy, and nanoparticles were observed by near-infrared (NIR) fluorescence imaging. For phototherapy, a handheld NIR laser (785 nm) at 0.6 W/cm2 was used to expose tumor or background liver, and tissue temperatures were assessed with a fiberoptic temperature probe. Intratumoral reactive oxygen species formation was assessed using a fluorophore (2',7'-dichlorodihydrofluorescein diacetate). RESULTS: Nanoparticles selectively accumulated within viable tumor by NIR fluorescence. Necrotic portions of tumor did not accumulate nanoparticles, consistent with a vascular distribution. NIR-dependent heat generation was observed with nanoparticle-containing tumors, but not in background liver. No heat was generated in the absence of NIR laser light. Reactive oxygen species were formed in nanoparticle-containing tumors exposed to NIR laser light, but not in background liver treated with NIR laser or in tumors in the absence of NIR light. CONCLUSIONS: Biodegradable nanoparticle delivery to liver tumors from a transarterial approach enabled selective in vivo tumor imaging and combinatorial phototherapy.


Asunto(s)
Medios de Contraste/administración & dosificación , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/terapia , Nanopartículas , Imagen Óptica/métodos , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/administración & dosificación , Silanos/administración & dosificación , Nanomedicina Teranóstica/métodos , Animales , Línea Celular Tumoral , Femenino , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Masculino , Proyectos Piloto , Valor Predictivo de las Pruebas , Conejos , Especies Reactivas de Oxígeno/metabolismo
4.
Vet Med Sci ; 4(4): 357-363, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30117668

RESUMEN

The role of epigenetic alterations during cancer has gained increasing attention and has resulted in a paradigm shift in our understanding of mechanisms leading to cancer susceptibility. Sulforaphane (SFN) is a naturally occurring isothiocyanate derived from the precursor glucosinolate, glucoraphanin (GFN), which is found in cruciferous vegetables such as broccoli. Sulforaphane has been shown to suppress tumour growth by several mechanisms including inhibiting histone deacetylases. The objective of this study was to provide a detailed analysis of sulforaphane absorption following a single oral dose of a broccoli sprout supplement in normal dogs. A single dose of broccoli sprout supplement (with active myrosinase) was orally administered to 10 healthy adult dogs. Blood and urine samples were collected prior to dosing, and at various time points post-dosing. Plasma total SFN metabolite levels peaked at 4 h post-consumption and were cleared by 24 h post-consumption. Urinary SFN metabolites peaked at 4 h post-consumption, and remained detectable at 24 and 48 h post-supplement consumption. A trend for decrease in histone deacetylase activity was observed at 1 h post-consumption and a significant decrease was observed at 24 h post-consumption. The data presented herein indicate that oral SFN is absorbed in dogs, SFN metabolites are detectable in plasma and urine post-dosing, and SFN and its metabolites have some effect on histone deacetylase activity following a single dose.


Asunto(s)
Brassica/química , Perros , Histona Desacetilasas/metabolismo , Isotiocianatos/farmacocinética , Extractos Vegetales/farmacología , Animales , Perros/sangre , Perros/orina , Inhibidores de Histona Desacetilasas/metabolismo , Inhibidores de Histona Desacetilasas/farmacocinética , Inhibidores de Histona Desacetilasas/farmacología , Isotiocianatos/metabolismo , Isotiocianatos/farmacología , Sulfóxidos
5.
Theranostics ; 8(3): 767-784, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29344305

RESUMEN

Fluorescence image-guided surgery combined with intraoperative therapeutic modalities has great potential for intraoperative detection of oncologic targets and eradication of unresectable cancer residues. Therefore, we have developed an activatable theranostic nanoplatform that can be used concurrently for two purposes: (1) tumor delineation with real-time near infrared (NIR) fluorescence signal during surgery, and (2) intraoperative targeted treatment to further eliminate unresected disease sites by non-toxic phototherapy. Methods: The developed nanoplatform is based on a single agent, silicon naphthalocyanine (SiNc), encapsulated in biodegradable PEG-PCL (poly (ethylene glycol)-b-poly(ɛ-caprolactone)) nanoparticles. It is engineered to be non-fluorescent initially via dense SiNc packing within the nanoparticle's hydrophobic core, with NIR fluorescence activation after accumulation at the tumor site. The activatable nanoplatform was evaluated in vitro and in two different murine cancer models, including an ovarian intraperitoneal metastasis-mimicking model. Furthermore, fluorescence image-guided surgery mediated by this nanoplatform was performed on the employed animal models using a Fluobeam® 800 imaging system. Finally, the phototherapeutic efficacy of the developed nanoplatform was demonstrated in vivo. Results: Our in vitro data suggest that the intracellular environment of cancer cells is capable of compromising the integrity of self-assembled nanoparticles and thus causes disruption of the tight dye packing inside the hydrophobic cores and activation of the NIR fluorescence. Animal studies demonstrated accumulation of activatable nanoparticles at the tumor site following systemic administration, as well as release and fluorescence recovery of SiNc from the polymeric carrier. It was also validated that the developed nanoparticles are compatible with the intraoperative imaging system Fluobeam® 800, and nanoparticle-mediated image-guided surgery provides successful resection of cancer tumors. Finally, in vivo studies revealed that combinatorial phototherapy mediated by the nanoparticles could efficiently eradicate chemoresistant ovarian cancer tumors. Conclusion: The revealed properties of the activatable nanoplatform make it highly promising for further application in clinical image-guided surgery and combined phototherapy, facilitating a potential translation to clinical studies.


Asunto(s)
Neoplasias Experimentales/terapia , Fototerapia/métodos , Espectroscopía Infrarroja Corta/métodos , Cirugía Asistida por Computador/métodos , Nanomedicina Teranóstica/métodos , Animales , Femenino , Colorantes Fluorescentes/farmacocinética , Células HEK293 , Humanos , Lactonas/química , Ratones , Ratones Desnudos , Nanopartículas/química , Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/cirugía , Polietilenglicoles/química , Porfirinas/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA