Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Microbiol ; 11: 620819, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33510733

RESUMEN

Chronic infection by Pseudomonas aeruginosa in cystic fibrosis (CF) patients is a major contributor to progressive lung damage and is poorly treated by available antibiotic therapy. An alternative approach to the development of additional antibiotic treatments is to identify complementary therapies which target bacterial virulence factors necessary for the establishment and/or maintenance of the chronic infection. The P. aeruginosa elastase (LasB) has been suggested as an attractive anti-virulence target due to its extracellular location, its harmful degradative effects on host tissues and the immune system, and the potential to inhibit its activity using small molecule inhibitors. However, while the relevance of LasB in acute P. aeruginosa infection has been demonstrated, it is still unclear whether this elastase might also play a role in the early phase of chronic lung colonization. By analyzing clinical P. aeruginosa clonal isolates from a CF patient, we found that the isolate RP45, collected in the early phase of persistence, produces large amounts of active LasB, while its clonal variant RP73, collected after years of colonization, does not produce it. When a mouse model of persistent pneumonia was used, deletion of the lasB gene in RP45 resulted in a significant reduction in mean bacterial numbers and incidence of chronic lung colonization at Day 7 post-challenge compared to those mice infected with wild-type (wt) RP45. Furthermore, deletion of lasB in strain RP45 also resulted in an increase in immunomodulators associated with innate and adaptive immune responses in infected animals. In contrast, deletion of the lasB gene in RP73 did not affect the establishment of chronic infection. Overall, these results indicate that LasB contributes to the adaptation of P. aeruginosa to a persistent lifestyle. In addition, these findings support pharmacological inhibition of LasB as a potentially useful therapeutic intervention for P. aeruginosa-infected CF patients prior to the establishment of a chronic infection.

2.
Biochim Biophys Acta ; 1822(5): 690-713, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22226887

RESUMEN

Cystic fibrosis is a lethal autosomal recessive condition caused by a defect of the transmembrane conductance regulator gene that has a key role in cell homeostasis. A dysfunctional cystic fibrosis transmembrane conductance regulator impairs the efflux of cell anions such as chloride and bicarbonate, and also that of other solutes such as reduced glutathione. This defect produces an increased viscosity of secretions together with other metabolic defects of epithelia that ultimately promote the obstruction and fibrosis of organs. Recurrent pulmonary infections and respiratory dysfunction are main clinical consequences of these pathogenetic events, followed by pancreatic and liver insufficiency, diabetes, protein-energy malnutrition, etc. This complex comorbidity is associated with the extensive injury of different biomolecular targets by reactive oxygen species, which is the biochemical hallmark of oxidative stress. These biological lesions are particularly pronounced in the lung, in which the extent of oxidative markers parallels that of inflammatory markers between chronic events and acute exacerbations along the progression of the disease. Herein, an abnormal flux of reactive oxygen species is present by the sustained activation of neutrophils and other cystic fibrosis-derived defects in the homeostatic processes of pulmonary epithelia and lining fluids. A sub-optimal antioxidant protection is believed to represent a main contributor to oxidative stress and to the poor control of immuno-inflammatory pathways in these patients. Observed defects include an impaired reduced glutathione metabolism and lowered intake and absorption of fat-soluble antioxidants (vitamin E, carotenoids, coenzyme Q-10, some polyunsaturated fatty acids, etc.) and oligoelements (such as Se, Cu and Zn) that are involved in reactive oxygen species detoxification by means of enzymatic defenses. Oral supplements and aerosolized formulations of thiols have been used in the antioxidant therapy of this inherited disease with the main aim of reducing the extent of oxidative lesions and the rate of lung deterioration. Despite positive effects on laboratory end points, poor evidence was obtained on the side of clinical outcome so far. These aspects examined in this critical review of the literature clearly suggest that further and more rigorous trials are needed together with new generations of pharmacological tools to a more effective antioxidant and anti-inflammatory therapy of cystic fibrosis patients. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.


Asunto(s)
Antioxidantes/uso terapéutico , Fibrosis Quística/tratamiento farmacológico , Estrés Oxidativo , Fibrosis Quística/metabolismo , Humanos , Inflamación/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA