Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pharm Biol ; 54(10): 1998-2006, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26916332

RESUMEN

Content Our team has identified Labrador tea [Rhododendron groenlandicum L. (Ericaceae)] as a potential antidiabetic plant from the traditional pharmacopoeia of the Eastern James Bay Cree. In a previous in vivo study, the plant extract was tested in a high-fat diet (HFD)-induced obese model using C57BL/6 mice and it improved glycaemia, insulinaemia and glucose tolerance. Objective In the present study, we assessed the plant's potential renoprotective effects. Materials and methods Rhododendron groenlandicum was administered at 250 mg/kg/d to mice fed HFD for 8 weeks to induce obesity and mild diabetes. Histological (periodic acid-Schiff (PAS), Masson and Oil Red O staining), immunohistochemical (IHC) and biochemical parameters were assessed to evaluate the renoprotective potential of R. groenlandicum treatment for an additional 8 weeks. Results Microalbuminuria and renal fibrosis were developed in HFD-fed mice. Meanwhile, there was a tendency for R. groenlandicum to improve microalbuminuria, with the values of albumin-creatinine ratio (ACR) reducing from 0.69 to 0.53. Renal fibrosis value was originally 4.85 arbitrary units (AU) in HFD-fed mice, dropped to 3.27 AU after receiving R. groenlandicum treatment. Rhododendron groenlandicum reduced renal steatosis by nearly one-half, whereas the expression of Bcl-2-modifying factor (BMF) diminished from 13.96 AU to 9.43 AU. Discussion and conclusions Taken altogether, the results suggest that R. groenlandicum treatment can improve renal function impaired by HFD.


Asunto(s)
Diabetes Mellitus/tratamiento farmacológico , Nefropatías Diabéticas/prevención & control , Hipoglucemiantes/farmacología , Riñón/efectos de los fármacos , Ledum , Obesidad/complicaciones , Extractos Vegetales/farmacología , Agentes Urológicos/farmacología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Albuminuria/etiología , Albuminuria/prevención & control , Animales , Citoprotección , Diabetes Mellitus/etiología , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/fisiopatología , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Fibrosis , Hipoglucemiantes/aislamiento & purificación , Riñón/metabolismo , Riñón/patología , Riñón/fisiopatología , Ledum/química , Ratones Endogámicos C57BL , Farmacopeas como Asunto , Fitoterapia , Extractos Vegetales/aislamiento & purificación , Hojas de la Planta , Plantas Medicinales , Agentes Urológicos/aislamiento & purificación
2.
Eur J Nutr ; 55(3): 941-54, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25916863

RESUMEN

PURPOSE: Using a diet-induced obesity (DIO) mouse model, we investigated the antidiabetic effect of Labrador tea [Rhododendron groenlandicum (Oeder) Kron and Judd], a beverage and medicinal tea used by the Cree Nations of northern Quebec. METHODS: C57BL6 mice were divided into five groups and given standard chow (~4 % of lipids) or high-fat diet (~35 % of lipids) for 8 weeks until they became obese and insulin resistant. Treatment began by adding the plant extract at three doses (125, 250 and 500 mg/kg) to the high-fat diet for another 8 weeks. At the end of the study, insulin-sensitive tissues (liver, skeletal muscle, adipose tissue) were collected to investigate the plant's molecular mechanisms. RESULTS: Labrador tea significantly reduced blood glucose (13 %), the response to an oral glucose tolerance test (18.2 %) and plasma insulin (65 %) while preventing hepatic steatosis (42 % reduction in hepatic triglyceride levels) in DIO mice. It stimulated insulin-dependent Akt pathway (55 %) and increased the expression of GLUT4 (53 %) in skeletal muscle. In the liver, Labrador tea stimulated the insulin-dependent Akt and the insulin-independent AMP-activated protein kinase pathways. The improvement in hepatic steatosis observed in DIO-treated mice was associated with a reduction in inflammation (through the IKK α/ß) and a decrease in the hepatic content of SREBP-1 (39 %). CONCLUSIONS: Labrador tea exerts potential antidiabetic action by improving insulin sensitivity and mitigating high-fat diet-induced obesity and hyperglycemia. They validate the safety and efficacy of this plant, a promising candidate for culturally relevant complementary treatment in Cree diabetics.


Asunto(s)
Hipoglucemiantes/farmacología , Resistencia a la Insulina , Ledum/química , Obesidad/sangre , Extractos Vegetales/farmacología , Rhododendron/química , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Alanina Transaminasa/sangre , Fosfatasa Alcalina/sangre , Animales , Aspartato Aminotransferasas/sangre , Glucemia/metabolismo , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Creatinina/sangre , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Hígado Graso/prevención & control , Prueba de Tolerancia a la Glucosa , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/sangre , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Obesidad/tratamiento farmacológico , Triglicéridos/sangre
3.
Artículo en Inglés | MEDLINE | ID: mdl-25013446

RESUMEN

Vaccinium vitis-idaea, commonly known as lingonberry, has been identified among species used by the Cree of Eeyou Istchee of northern Quebec to treat symptoms of diabetes. In a previous study, the ethanol extract of berries of V. vitis-idaea enhanced glucose uptake in C2C12 muscle cells via stimulation of AMP-activated protein kinase (AMPK) pathway. The purpose of this study was to examine the effect of plant extract in a dietary mouse model of mild type 2 diabetes. C57BL/6 mice fed a high-fat diet (HFD, ∼35% lipids) for 8 weeks that become obese and insulin-resistant (diet-induced obesity, DIO) were used. Treatment began by adding V. vitis-idaea extract to HFD at 3 different concentrations (125, 250, and 500 mg/Kg) for a subsequent period of 8 weeks (total HFD, 16 weeks). The plant extract significantly decreased glycemia and strongly tended to decrease insulin levels in this model. This was correlated with a significant increase in GLUT4 content and activation of the AMPK and Akt pathways in skeletal muscle. V. vitis-idaea treatment also improved hepatic steatosis by decreasing hepatic triglyceride levels and significantly activated liver AMPK and Akt pathways. The results of the present study confirm that V. vitis-idaea represents a culturally relevant treatment option for Cree diabetics and pave the way to clinical studies.

4.
Artículo en Inglés | MEDLINE | ID: mdl-23781256

RESUMEN

Populus balsamifera L. (BP) is a medicinal plant stemming from the traditional pharmacopoeia of the Cree of Eeyou Istchee (CEI-Northern Quebec). In vitro screening studies revealed that it strongly inhibited adipogenesis in 3T3-L1 adipocytes, suggesting potential antiobesity activity. Salicortin was identified, through bioassay-guided fractionation, as the active component responsible for BP's activity. The present study aimed to assess the potential of BP and salicortin at reducing obesity and features of the metabolic syndrome, in diet-induced obese C57Bl/6 mice. Mice were subjected to high fat diet (HFD) for sixteen weeks, with BP (125 or 250 mg/kg) or salicortin (12.5 mg/kg) introduced in the HFD for the last eight of the sixteen weeks. BP and salicortin effectively reduced whole body and retroperitoneal fat pad weights, as well as hepatic triglyceride accumulation. Glycemia, insulinemia, leptin, and adiponectin levels were also improved. This was accompanied by a small yet significant reduction in food intake in animals treated with BP. BP and salicortin (slightly) also modulated key components in signaling pathways involved with glucose regulation and lipid oxidation in the liver, muscle, and adipose tissue. These results confirm the validity of the CEI pharmacopoeia as alternative and complementary antiobesity and antidiabetic therapies.

5.
Artículo en Inglés | MEDLINE | ID: mdl-22888363

RESUMEN

Larix laricina K. Koch is a medicinal plant belonging to traditional pharmacopoeia of the Cree of Eeyou Istchee (Eastern James Bay area of Canada). In vitro screening studies revealed that, like metformin and rosiglitazone, it increases glucose uptake and adipogenesis, activates AMPK, and uncouples mitochondrial function. The objective of this study was to evaluate the antidiabetic and antiobesity potential of L. laricina in diet-induced obese (DIO) C57BL/6 mice. Mice were subjected for eight or sixteen weeks to a high fat diet (HFD) or HFD to which L. laricina was incorporated at 125 and 250 mg/kg either at onset (prevention study) or in the last 8 of the 16 weeks of administration of the HFD (treatment study). L. laricina effectively decreased glycemia levels, improved insulin resistance, and slightly decreased abdominal fat pad and body weights. This occurred in conjunction with increased energy expenditure as demonstrated by elevated skin temperature in the prevention study and improved mitochondrial function and ATP synthesis in the treatment protocol. L. laricina is thus a promising alternative and complementary therapeutic approach for the treatment and care of obesity and diabetes among the Cree.

6.
J Ethnopharmacol ; 141(3): 1012-20, 2012 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-22504062

RESUMEN

ETHNOBOTANICAL RELEVANCE: : In previous in vitro bioassay studies, Populus balsamifera L. (Salicaceae), a medicinal plant ethnobotanically identified from the traditional pharmacopoeia of the Cree of Eeyou Istchee (Eastern James Bay area of Canada), exhibited a strong anti-obesity potential by potently inhibiting adipogenesis in 3T3-L1 adipocytes. The aim of the study is to evaluate the effectiveness of this plant extract in mitigating the development of obesity and the metabolic syndrome in diet-induced obese (DIO) C57BL/6 mice. MATERIALS AND METHODS: Mice were subjected for eight weeks to a standard diet (CHOW), a high fat diet (HFD; DIO group), or HFD to which Populus balsamifera was incorporated at 125 and 250 mg/kg. RESULTS: The results showed that Populus balsamifera decreased in a dose-dependent manner the weight gain of whole body, retroperitoneal fat pad and liver as compared to DIO controls and reduced the severity of hepatic macrovesicular steatosis and triglyceride accumulation. This plant extract also decreased glycemia in the second half of the feeding period and improved insulin sensitivity by diminishing insulin levels and the leptin/adiponectin ratio, as well as augmenting adiponectin levels. These effects were associated with slightly but significantly reduced food intake with 250 mg/kg Populus balsamifera as well as with an increase in energy expenditure (increase in skin temperature and increased expression of uncoupling protein-1; UCP-1). Data also suggest other mechanisms, such as inhibition of adipocyte differentiation, decrease of hepatic inflammatory state and potential increase in hepatic fatty acid oxidation. CONCLUSION: Taken together, these results confirm the potential of Populus balsamifera as a culturally adapted therapeutic approach for the care and treatment of obesity and diabetes among the Cree.


Asunto(s)
Fármacos Antiobesidad/uso terapéutico , Hipoglucemiantes/uso terapéutico , Resistencia a la Insulina , Obesidad/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Populus , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Fármacos Antiobesidad/farmacología , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Hipoglucemiantes/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Obesidad/metabolismo , Extractos Vegetales/farmacología , Temperatura Cutánea , Triglicéridos/metabolismo
7.
Artículo en Inglés | MEDLINE | ID: mdl-19884114

RESUMEN

Nonalcoholic steatohepatitis (NASH) is a progressive liver disease related to the metabolic syndrome, obesity and diabetes. The rising prevalence of NASH and the lack of efficient treatments have led to the exploration of different therapeutic approaches. Milk thistle (Silibum marianum) is a medicinal plant used for its hepatoprotective properties in chronic liver disease since the 4th century BC. We explored the therapeutic effect of silibinin, the plant's most biologically active extract, in an experimental rat NASH model. A control group was fed a standard liquid diet for 12 weeks. The other groups were fed a high-fat liquid diet for 12 weeks without (NASH) or with simultaneous daily supplement with silibinin-phosphatidylcholine complex (Silibinin 200 mg kg(-1)) for the last 5 weeks. NASH rats developed all key hallmarks of the pathology. Treatment with silibinin improved liver steatosis and inflammation and decreased NASH-induced lipid peroxidation, plasma insulin and TNF-α. Silibinin also decreased O(2) (∙-) release and returned the relative liver weight as well as GSH back to normal. Our results suggest that milk thistle's extract, silibinin, possesses antioxidant, hypoinsulinemic and hepatoprotective properties that act against NASH-induced liver damage. This medicinal herb thus shows promising therapeutic potential for the treatment of NASH.

8.
Artículo en Inglés | MEDLINE | ID: mdl-19887507

RESUMEN

A number of potential anti-diabetic plants were identified through an ethnobotanical survey of the traditional pharmacopeia of the Cree of Eeyou Istchee (CEI-Northeastern Canada) used against symptoms of diabetes and their biological activity assessed by in vitro bioassays. Among these, Sorbus decora C.K.Schneid. (Rosacea) ranked highly and increased the transport of glucose in skeletal muscle cells in culture. The present study thus aimed at confirming the antidiabetic potential of S. decora in in vivo models of insulin resistance and diabetes, notably the streptozotocin Type 1 diabetic rat (STZ), the genetic KK-A(y) Type 2 diabetic mouse and the rat rendered insulin resistant with 10% glucose water consumption for 6 weeks. Sorbus decora ethanolic crude extract (SDEE) was administered orally (200 mg kg(-1)) and compared to metformin (150 or 500 mg kg(-1)). The intragastric (i.g.) gavage of SDEE transiently decreased glycemia in STZ rats in a bi-phasic manner but the effect was cumulative over several days. In KK-A(y) mice, SDEE incorporated in food (0.12%) decreased glycemia by 15% within 1 week as compared to vehicle controls. In pre-diabetic insulin-resistant rats, SDEE fed daily by i.g. gavage for 2 weeks significantly decreased the slight hyperglycemia and hyperinsulinemia, without affecting sugar water intake. Using the HOMA insulin resistance parameter, the effect of SDEE was equivalent to that of metformin. In conclusion, the ethanolic crude extract of S. decora demonstrates both anti-hyperglycemic and insulin-sensitizing activity in vivo, thereby confirming anti-diabetic potential and validating CEI traditional medicine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA