Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Health Perspect ; 131(12): 127003, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38039140

RESUMEN

BACKGROUND: Studies across the globe generally reported increased mortality risks associated with particulate matter with aerodynamic diameter ≤2.5µm (PM2.5) exposure with large heterogeneity in the magnitude of reported associations and the shape of concentration-response functions (CRFs). We aimed to evaluate the impact of key study design factors (including confounders, applied exposure model, population age, and outcome definition) on PM2.5 effect estimates by harmonizing analyses on three previously published large studies in Canada [Mortality-Air Pollution Associations in Low Exposure Environments (MAPLE), 1991-2016], the United States (Medicare, 2000-2016), and Europe [Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE), 2000-2016] as much as possible. METHODS: We harmonized the study populations to individuals 65+ years of age, applied the same satellite-derived PM2.5 exposure estimates, and selected the same sets of potential confounders and the same outcome. We evaluated whether differences in previously published effect estimates across cohorts were reduced after harmonization among these factors. Additional analyses were conducted to assess the influence of key design features on estimated risks, including adjusted covariates and exposure assessment method. A combined CRF was assessed with meta-analysis based on the extended shape-constrained health impact function (eSCHIF). RESULTS: More than 81 million participants were included, contributing 692 million person-years of follow-up. Hazard ratios and 95% confidence intervals (CIs) for all-cause mortality associated with a 5-µg/m3 increase in PM2.5 were 1.039 (1.032, 1.046) in MAPLE, 1.025 (1.021, 1.029) in Medicare, and 1.041 (1.014, 1.069) in ELAPSE. Applying a harmonized analytical approach marginally reduced difference in the observed associations across the three studies. Magnitude of the association was affected by the adjusted covariates, exposure assessment methodology, age of the population, and marginally by outcome definition. Shape of the CRFs differed across cohorts but generally showed associations down to the lowest observed PM2.5 levels. A common CRF suggested a monotonically increased risk down to the lowest exposure level. https://doi.org/10.1289/EHP12141.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Anciano , Contaminantes Atmosféricos/análisis , Exposición a Riesgos Ambientales/análisis , Programas Nacionales de Salud , Contaminación del Aire/análisis , Material Particulado/análisis , Europa (Continente)/epidemiología , Estudios de Cohortes , Canadá/epidemiología
2.
Elife ; 102021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34406119

RESUMEN

Identifying individuals who are at high risk of cancer due to inherited germline mutations is critical for effective implementation of personalized prevention strategies. Most existing models focus on a few specific syndromes; however, recent evidence from multi-gene panel testing shows that many syndromes are overlapping, motivating the development of models that incorporate family history on several cancers and predict mutations for a comprehensive panel of genes.We present PanelPRO, a new, open-source R package providing a fast, flexible back-end for multi-gene, multi-cancer risk modeling with pedigree data. It includes a customizable database with default parameter values estimated from published studies and allows users to select any combinations of genes and cancers for their models, including well-established single syndrome BayesMendel models (BRCAPRO and MMRPRO). This leads to more accurate risk predictions and ultimately has a high impact on prevention strategies for cancer and clinical decision making. The package is available for download for research purposes at https://projects.iq.harvard.edu/bayesmendel/panelpro.


Genetic mutations that increase cancer risk can be passed down from parents to their children, which can affect families across many generations. In these families, multiple members may be affected by different types of cancer, and these cancers often develop at an early age. Unaffected family members are often referred to genetic counselling, where they can explore their own risk of cancer. Clinicians and genetic counselors can provide recommendations to minimize cancer risk and inform personal choices on how to manage that risk, such as opting for preventative surgeries or participating in regular screening. In genetic counselling sessions, highly trained clinicians and specialists use software that takes an individual's family history of cancer and uses it to estimate their individual risk of carrying certain genetic mutations. These estimates can in turn help to predict their future risk of cancer. Many existing software packages are limited to estimating risks based on mutations in well-known cancer-related genes, such as BRCA1 and BRCA2 in breast and ovarian cancer. However, emerging evidence suggests that many of the genes associated with cancer risk work as part of a complex and overlapping network. Since current risk-profiling software packages are only designed to consider such genes in isolation, they cannot generate the most robust, accurate or comprehensive cancer risk profiles. To address this challenge, Lee, Liang et al. have developed a new risk-profiling software that can integrate a large number of gene mutations and a wide range of potential cancer types to provide more accurate estimates of individual cancer risk. This software, called PanelPRO, uses evidence identified from extensive literature reviews to model the complex interplay between genes and cancer risk. The software not only calculates risks based on known genes, but also allows other developers to integrate new cancer-related genes that may be identified in the future. Importantly, the software is compatible with genetic counselling applications, since it returns answers within seconds when reasonable family and gene database sizes are used. PanelPRO is a new, modern, flexible and efficient software package that provides an important advance towards modelling the vast genetic and biological complexity that contributes to inherited cancer risk. This software is designed to provide a more accurate and comprehensive estimate of cancer risk for individuals with family histories of cancer. As an open-source software, it is freely available for research purposes, and can be licensed by software companies and healthcare organizations to integrate electronic patient records and rapidly identify at-risk individuals across larger patient groups. Ultimately, this software has the potential to improve cancer prevention strategies and optimize the personalized decision-making processes around cancer risk.


Asunto(s)
Predisposición Genética a la Enfermedad , Pruebas Genéticas/métodos , Neoplasias/genética , Programas Informáticos , Femenino , Humanos , Masculino , Modelos Genéticos , Mutación , Linaje , Síndrome
3.
Ann Surg Oncol ; 28(11): 6590-6600, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33660127

RESUMEN

BACKGROUND: The prevalence of non-medullary thyroid cancer (NMTC) is increasing worldwide. Although most NMTCs grow slowly, conventional therapies are less effective in advanced tumors. Approximately 5-15% of NMTCs have a significant germline genetic component. Awareness of the NMTC susceptibility genes may lead to earlier diagnosis and better cancer prevention. OBJECTIVE: The aim of this study was to provide the current panorama of susceptibility genes associated with NMTC and the spectrum of diseases associated with these genes. METHODS: Twenty-five candidate genes were identified by searching for relevant studies in PubMed. Each candidate gene was carefully checked using six authoritative genetic resources: ClinGen, National Comprehensive Cancer Network guidelines, Online Mendelian Inheritance in Man, Genetics Home Reference, GeneCards, and Gene-NCBI, and a validated natural language processing (NLP)-based literature review protocol was used to further assess gene-disease associations where there was ambiguity. RESULTS: Among 25 candidate genes, 10 (APC, DICER1, FOXE1, HABP2, NKX2-1, PRKAR1A, PTEN, SDHB, SDHD, and SRGAP1) were verified among the six genetic resources. Two additional genes, CHEK2 and SEC23B, were verified using the NLP protocol. Seventy-nine diseases were found to be associated with these 12 NMTC susceptibility genes. The following diseases were associated with more than one NMTC susceptibility gene: colorectal cancer, breast cancer, gastric cancer, kidney cancer, gastrointestinal stromal tumor, paraganglioma, pheochromocytoma, and benign skin conditions. CONCLUSION: Twelve genes predisposing to NMTC and their associated disease spectra were identified and verified. Clinicians should be aware that patients with certain pathogenic variants may require more aggressive surveillance beyond their thyroid cancer risk.


Asunto(s)
Predisposición Genética a la Enfermedad , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides , Mutación de Línea Germinal , Humanos , Cáncer Papilar Tiroideo/genética , Neoplasias de la Tiroides/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA