Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 15(3): e0230578, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32218605

RESUMEN

Despite the diversity in fish auditory structures, it remains elusive how otolith morphology and swim bladder-inner ear (= otophysic) connections affect otolith motion and inner ear stimulation. A recent study visualized sound-induced otolith motion; but tank acoustics revealed a complex mixture of sound pressure and particle motion. To separate sound pressure and sound-induced particle motion, we constructed a transparent standing wave tube-like tank equipped with an inertial shaker at each end while using X-ray phase contrast imaging. Driving the shakers in phase resulted in maximised sound pressure at the tank centre, whereas particle motion was maximised when shakers were driven out of phase (180°). We studied the effects of two types of otophysic connections-i.e. the Weberian apparatus (Carassius auratus) and anterior swim bladder extensions contacting the inner ears (Etroplus canarensis)-on otolith motion when fish were subjected to a 200 Hz stimulus. Saccular otolith motion was more pronounced when the swim bladder walls oscillated under the maximised sound pressure condition. The otolith motion patterns mainly matched the orientation patterns of ciliary bundles on the sensory epithelia. Our setup enabled the characterization of the interplay between the auditory structures and provided first experimental evidence of how different types of otophysic connections affect otolith motion.


Asunto(s)
Sacos Aéreos/fisiología , Cíclidos/fisiología , Carpa Dorada/fisiología , Membrana Otolítica/fisiología , Estimulación Acústica , Sacos Aéreos/anatomía & histología , Sacos Aéreos/diagnóstico por imagen , Animales , Umbral Auditivo , Cíclidos/anatomía & histología , Carpa Dorada/anatomía & histología , Audición/fisiología , Procesamiento de Imagen Asistido por Computador , Membrana Otolítica/anatomía & histología , Membrana Otolítica/diagnóstico por imagen , Natación , Tomografía
2.
Int J Radiat Oncol Biol Phys ; 101(4): 965-984, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29976510

RESUMEN

PURPOSE: Experimental neuroimaging provides a wide range of methods for the visualization of brain anatomic morphology down to subcellular detail. Still, each technique-specific detection mechanism presents compromises among the achievable field-of-view size, spatial resolution, and nervous tissue sensitivity, leading to partial sample coverage, unresolved morphologic structures, or sparse labeling of neuronal populations and often also to obligatory sample dissection or other sample invasive manipulations. X-ray phase-contrast imaging computed tomography (PCI-CT) is an experimental imaging method that simultaneously provides micrometric spatial resolution, high soft-tissue sensitivity, and ex vivo full organ rodent brain coverage without any need for sample dissection, staining or labeling, or contrast agent injection. In the present study, we explored the benefits and limitations of PCI-CT use for in vitro imaging of normal and cancerous brain neuromorphology after in vivo treatment with synchrotron-generated x-ray microbeam radiation therapy (MRT), a spatially fractionated experimental high-dose radiosurgery. The goals were visualization of the MRT effects on nervous tissue and a qualitative comparison of the results to the histologic and high-field magnetic resonance imaging findings. METHODS AND MATERIALS: MRT was administered in vivo to the brain of both healthy and cancer-bearing rats. At 45 days after treatment, the brain was dissected out and imaged ex vivo using propagation-based PCI-CT. RESULTS: PCI-CT visualizes the brain anatomy and microvasculature in 3 dimensions and distinguishes cancerous tissue morphology, necrosis, and intratumor accumulation of iron and calcium deposits. Moreover, PCI-CT detects the effects of MRT throughout the treatment target areas (eg, the formation of micrometer-thick radiation-induced tissue ablation). The observed neurostructures were confirmed by histologic and immunohistochemistry examination and related to the micro-magnetic resonance imaging data. CONCLUSIONS: PCI-CT enabled a unique 3D neuroimaging approach for ex vivo studies on small animal models in that it concurrently delivers high-resolution insight of local brain tissue morphology in both normal and cancerous micro-milieu, localizes radiosurgical damage, and highlights the deep microvasculature. This method could assist experimental small animal neurology studies in the postmortem evaluation of neuropathology or treatment effects.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de la radiación , Glioblastoma/diagnóstico por imagen , Glioblastoma/radioterapia , Neurorradiografía/métodos , Microtomografía por Rayos X/métodos , Animales , Encéfalo/irrigación sanguínea , Encéfalo/patología , Neoplasias Encefálicas/patología , Glioblastoma/patología , Imagen por Resonancia Magnética , Masculino , Microvasos/diagnóstico por imagen , Ratas , Ratas Endogámicas F344
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA