Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Ethnopharmacol ; 312: 116492, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37059248

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Artemisia sieberi Besser is a medicinal herb that has been traditionally used across the Middle East for the treatment of cancer. Further pharmacological studies on its extracts revealed that they possess cytotoxic activity against certain cancer cells, however, there were no studies conducted on the anticancer potential of Artemisia sieberi essential oil (ASEO). AIM OF THE STUDY: To evaluate the anticancer potential of ASEO, elucidate the oil's mode of action for the first time and investigate its chemical composition. MATERIALS AND METHODS: Artemisia sieberi was collected from Hail, Saudi Arabia, and its essential oil was obtained via hydrodistillation. The oil's activity against HCT116, HepG2, A549 and MCF-7 cells was assessed using SRB assay, while its anti-metastatic potential was assessed via a migration assay. Cell-cycle analysis and apoptosis assay were conducted via flow cytometry, while protein expression levels were investigated using Western blotting. The oil's chemical constituents were identified using GCMS. RESULTS: ASEO exerted its highest cytotoxic activity against MCF-7 with an IC50 value of 38.7 µg/ml. Further studies showed that the oil inhibited MCF-7 cells' migration, induced S-phase arrest and apoptosis. Western blot analysis showed no change in the expression level of caspase-3 after treatment, indicating the induction of caspase-independent apoptosis-like cell death in MCF-7. Treatment of MCF-7 with the oil resulted in downregulation of the protein expression levels of total ERK and its downstream target, LC3, indicating that any potential activation of the ERK signalling pathway during the cancer cells' growth would be inhibited. Finally, GCMS analysis identified the oil's major components as cis-crysanthenyl acetate (48.56%), davanone (10.28%), 1,8-cineole (6.81%) and caryophyllene diepoxide (5.34%), whereby it is suggested that these compounds might be responsible for the oil's bioactivity. CONCLUSION: ASEO possessed in vitro anticancer activity and modulated the ERK signalling pathway. This is the first study to explore the anticancer potential of ASEO in detail and reflects the significance of investigating essential oils from medicinal plants that have been traditionally used against cancer. This work might pave the way for further in vivo studies that could result in developing the oil into a natural effective anticancer treatment.


Asunto(s)
Artemisia , Neoplasias de la Mama , Aceites Volátiles , Plantas Medicinales , Humanos , Femenino , Aceites Volátiles/química , Artemisia/química , Regulación hacia Abajo , Neoplasias de la Mama/tratamiento farmacológico , Apoptosis , Plantas Medicinales/metabolismo , Caspasas/metabolismo
2.
Antibiotics (Basel) ; 11(9)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36139926

RESUMEN

The emergence of multidrug-resistant bacteria and fungi requires the development of antibiotics and antifungal agents. This review identified natural products isolated from Asian angiosperms with antibacterial and/or antifungal activities and analyzed their distribution, molecular weights, solubility, and modes of action. All data in this review were compiled from Google Scholar, PubMed, Science Direct, Web of Science, ChemSpider, PubChem, and a library search from 1979 to 2022. One hundred and forty-one antibacterial and/or antifungal alkaloids were identified during this period, mainly from basal angiosperms. The most active alkaloids are mainly planar, amphiphilic, with a molecular mass between 200 and 400 g/mol, and a polar surface area of about 50 Å2, and target DNA and/or topoisomerase as well as the cytoplasmic membrane. 8-Acetylnorchelerythrine, cryptolepine, 8-hydroxydihydrochelerythrine, 6-methoxydihydrosanguinarine, 2'-nortiliacorinine, pendulamine A and B, rhetsisine, sampangine, tiliacorine, tryptanthrin, tylophorinine, vallesamine, and viroallosecurinine yielded MIC ≤ 1 µg/mL and are candidates for the development of lead molecules.

3.
Nat Prod Res ; 36(18): 4645-4650, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34847782

RESUMEN

This study was done to evaluate the anticancer potential of Achillea fragrantissima (Forssk.) Sch.Bip. leaves methanolic extract in detail for the first time, in addition to investigating its antimicrobial activity. The antimicrobial assay revealed that the extract exerted high activity against P. vulgaris (MIC = 156.25 µg/ml) and C. albicans (MIC = 625 µg/ml), while moderate activity was observed against other microbes. The extract was also screened against HepG2, A549, HCT116 and MCF7 cancer cells and was found to be active across all cells with highest selectivity and cytotoxic activity being observed for A549 cells (IC50 = 1.21 µg/ml). Further mechanistic studies on A549 cells showed that the extract resulted in S-phase arrest and induced apoptosis via activation of caspase-3, p53 and Bax, in addition to downregulation of Bcl-2. HR-LCMS analysis indicated the presence of 3-hydroxycoumarin, quercetin 3,3'-dimethyl ether and skullcapflavone II which might be responsible for the extract's bioactivity.


Asunto(s)
Achillea , Antiinfecciosos , Neoplasias , Antiinfecciosos/farmacología , Apoptosis , Candida albicans , Metanol , Extractos Vegetales/farmacología
4.
Fitoterapia ; 125: 161-173, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29355749

RESUMEN

Cardamonin is a natural chalcone that has been shown to exhibit high anticancer activity. In an attempt to discover analogues of cardamonin with enhanced anticancer activity, 19 analogues were synthesized and tested against A549 and HK1 cell lines. Results of the MTS cell viability assay showed that several derivatives possessed cytotoxic activities that were several-fold more potent than cardamonin. SAR analysis showed the importance of the ketone and alkene groups for bioactivity, while substituting cardamonin's phenolic groups with more polar moieties resulted in activity enhancement. As part of the SAR study and further exploration of chemical space, the effect of metal coordination on cytotoxicity was also investigated, but it was only possible to successfully obtain the Cu (II) complex of cardamonin (19). Compound 19 was the most active analogue possessing IC50 values of 13.2µM and 0.7µM against A549 and HK1 cells, corresponding to a 5- and 32-fold increase in activity, respectively. It was also able to significantly inhibit the migration of A549 and HK1 cells. Further mode of action studies have shown that the most active analogue, 19, induced DNA damage resulting in G2/M-phase cell- cycle arrest in both cell lines. These events further led to the induction of apoptosis by the compound via caspase-3/7 and caspase-9 activation, PARP cleavage and downregulation of Mcl-1 expression. Moreover, 19 inhibited the expression levels of p-mTOR and p-4EBP1, which indicated that it exerted its anticancer activity, at least in part, via inhibition of the mTOR signalling pathway.


Asunto(s)
Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Chalconas/farmacología , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Línea Celular Tumoral , Chalconas/síntesis química , Humanos , Estructura Molecular , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA