Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Biochemistry ; 63(1): 42-52, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38146842

RESUMEN

Inositol phosphates and their pyrophosphorylated derivatives are responsive to the phosphate supply and are agents of phosphate homeostasis and other aspects of physiology. It seems likely that the enzymes that interconvert these signals work against the prevailing milieu of mixed populations of competing substrates and products. The synthesis of inositol pyrophosphates is mediated in plants by two classes of ATP-grasp fold kinase: PPIP5 kinases, known as VIH, and members of the inositol tris/tetrakisphosphate kinase (ITPK) family, specifically ITPK1/2. A molecular explanation of the contribution of ITPK1/2 to inositol pyrophosphate synthesis and turnover in plants is incomplete: the absence of nucleotide in published crystal structures limits the explanation of phosphotransfer reactions, and little is known of the affinity of potential substrates and competitors for ITPK1. Herein, we describe a complex of ADP and StITPK1 at 2.26 Å resolution and use a simple fluorescence polarization approach to compare the affinity of binding of diverse inositol phosphates, inositol pyrophosphates, and analogues. By simple HPLC, we reveal the novel catalytic capability of ITPK1 for different inositol pyrophosphates and show Ins(3,4,5,6)P4 to be a potent inhibitor of the inositol pyrophosphate-synthesizing activity of ITPK1. We further describe the exquisite specificity of ITPK1 for the myo-isomer among naturally occurring inositol hexakisphosphates.


Asunto(s)
Difosfatos , Solanum tuberosum , Fosfatos de Inositol , Ácido Fítico
2.
PLoS One ; 18(6): e0284724, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37363920

RESUMEN

Inert digestibility index markers such as titanium dioxide are universally accepted to provide simple measurement of digestive tract retention and relative digestibility in poultry feeding trials. Their use underpins industry practice: specifically dosing regimens for adjunct enzymes added to animal feed. Among these, phytases, enzymes that degrade dietary phytate, inositol hexakisphosphate, represent a billion-dollar sector in an industry that raises ca. 70 billion chickens/annum. Unbeknown to the feed enzyme sector, is the growth in cell biology of use of titanium dioxide for enrichment of inositol phosphates from extracts of cells and tissues. The adoption of titanium dioxide in cell biology arises from its affinity under acid conditions for phosphates, suggesting that in feeding trial contexts that target phytate degradation this marker may not be as inert as assumed. We show that feed grade titanium dioxide enriches a mixed population of higher and lower inositol phosphates from acid solutions. Additionally, we compared the extractable inositol phosphates in gizzard and ileal digesta of 21day old male Ross 308 broilers fed three phytase doses (0, 500 and 6000 FTU/kg feed) and one inositol dose (2g/kg feed). This experiment was performed with or without titanium dioxide added as a digestibility index marker at a level of 0.5%, with all diets fed for 21 days. Analysis yielded no significant difference in effect of phytase inclusion in the presence or absence of titanium dioxide. Thus, despite the utility of titanium dioxide for recovery of inositol phosphates from biological samples, it seems that its use as an inert marker in digestibility trials is justified-as its inclusion in mash diets does not interfere with the recovery of inositol phosphates from digesta samples.


Asunto(s)
6-Fitasa , Suplementos Dietéticos , Animales , Masculino , Suplementos Dietéticos/análisis , Ácido Fítico/metabolismo , Aves de Corral/metabolismo , Pollos , 6-Fitasa/metabolismo , Digestión , Dieta/veterinaria , Fosfatos de Inositol/metabolismo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales
3.
PLoS One ; 17(10): e0275742, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36260560

RESUMEN

Phytases, enzymes that degrade phytate present in feedstuffs, are widely added to the diets of monogastric animals. Many studies have correlated phytase addition with improved animal productivity and a subset of these have sought to correlate animal performance with phytase-mediated generation of inositol phosphates in different parts of the gastro-intestinal tract or with release of inositol or of phosphate, the absorbable products of phytate degradation. Remarkably, the effect of dietary phytase on tissue inositol phosphates has not been studied. The objective of this study was to determine effect of phytase supplementation on liver and kidney myo-inositol and myo-inositol phosphates in broiler chickens. For this, methods were developed to measure inositol phosphates in chicken tissues. The study comprised wheat/soy-based diets containing one of three levels of phytase (0, 500 and 6,000 FTU/kg of modified E. coli 6-phytase). Diets were provided to broilers for 21 D and on day 21 digesta were collected from the gizzard and ileum. Liver and kidney tissue were harvested. Myo-inositol and inositol phosphates were measured in diet, digesta, liver and kidney. Gizzard and ileal content inositol was increased progressively, and total inositol phosphates reduced progressively, by phytase supplementation. The predominant higher inositol phosphates detected in tissues, D-and/or L-Ins(3,4,5,6)P4 and Ins(1,3,4,5,6)P5, differed from those (D-and/or L-Ins(1,2,3,4)P4, D-and/or L-Ins(1,2,5,6)P4, Ins(1,2,3,4,6)P5, D-and/or L-Ins(1,2,3,4,5)P5 and D-and/or L-Ins(1,2,4,5,6)P5) generated from phytate (InsP6) degradation by E. coli 6-phytase or endogenous feed phytase, suggesting tissue inositol phosphates are not the result of direct absorption. Kidney inositol phosphates were reduced progressively by phytase supplementation. These data suggest that tissue inositol phosphate concentrations can be influenced by dietary phytase inclusion rate and that such effects are tissue specific, though the consequences for physiology of such changes have yet to be elucidated.


Asunto(s)
6-Fitasa , Animales , 6-Fitasa/metabolismo , Fosfatos de Inositol/metabolismo , Ácido Fítico/metabolismo , Pollos/fisiología , Aves de Corral/metabolismo , Fenómenos Fisiológicos Nutricionales de los Animales , Escherichia coli/metabolismo , Alimentación Animal/análisis , Digestión , Suplementos Dietéticos , Riñón/metabolismo , Fosfatos/metabolismo
4.
Int J Mol Sci ; 23(11)2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35683026

RESUMEN

AppA, the Escherichia coli periplasmic phytase of clade 2 of the histidine phosphatase (HP2) family, has been well-characterized and successfully engineered for use as an animal feed supplement. AppA is a 1D-6-phytase and highly stereospecific but transiently accumulates 1D-myo-Ins(2,3,4,5)P4 and other lower phosphorylated intermediates. If this bottleneck in liberation of orthophosphate is to be obviated through protein engineering, an explanation of its rather rigid preference for the initial site and subsequent cleavage of phytic acid is required. To help explain this behaviour, the role of the catalytic proton donor residue in determining AppA stereospecificity was investigated. Four variants were generated by site-directed mutagenesis of the active site HDT amino acid sequence motif containing the catalytic proton donor, D304. The identity and position of the prospective proton donor residue was found to strongly influence stereospecificity. While the wild-type enzyme has a strong preference for 1D-6-phytase activity, a marked reduction in stereospecificity was observed for a D304E variant, while a proton donor-less mutant (D304A) displayed exclusive 1D-1/3-phytase activity. High-resolution X-ray crystal structures of complexes of the mutants with a non-hydrolysable substrate analogue inhibitor point to a crucial role played by D304 in stereospecificity by influencing the size and polarity of specificity pockets A and B. Taken together, these results provide the first evidence for the involvement of the proton donor residue in determining the stereospecificity of HP2 phytases and prepares the ground for structure-informed engineering studies targeting the production of animal feed enzymes capable of the efficient and complete dephosphorylation of dietary phytic acid.


Asunto(s)
6-Fitasa , Proteínas de Escherichia coli , 6-Fitasa/metabolismo , Fosfatasa Ácida/metabolismo , Animales , Fosfatos de Dinucleósidos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Ácido Fítico/metabolismo , Estudios Prospectivos , Protones
5.
Front Physiol ; 10: 1251, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31632293

RESUMEN

The incidence of woody breast (WB) is increasing on a global scale representing a significant welfare problem and economic burden to the poultry industry and for which there is no effective treatment due to its unknown etiology. In this study, using diffuse reflectance spectroscopy (DRS) coupled with iSTAT portable clinical analyzer, we provide evidence that the circulatory- and breast muscle-oxygen homeostasis is dysregulated [low oxygen and hemoglobin (HB) levels] in chickens with WB myopathy compared to healthy counterparts. Molecular analysis showed that blood HB subunit Mu (HBM), Zeta (HBZ), and hephaestin (HEPH) expression were significantly down regulated; however, the expression of the subunit rho of HB beta (HBBR) was upregulated in chicken with WB compared to healthy counterparts. The breast muscle HBBR, HBE, HBZ, and hypoxia-inducible factor prolyl hydroxylase 2 (PHD2) mRNA abundances were significantly down regulated in WB-affected compared to normal birds. The expression of HIF-1α at mRNA and protein levels was significantly induced in breasts of WB-affected compared to unaffected birds confirming a local hypoxic status. The phosphorylated levels of the upstream mediators AKT at Ser473 site, mTOR at Ser2481 site, and PI3K P85 at Tyr458 site, as well as their mRNA levels were significantly increased in breasts of WB-affected birds. In attempt to identify a nutritional strategy to reduce WB incidence, male broiler chicks (Cobb 500, n = 576) were randomly distributed into 48 floor pens and subjected to six treatments (12 birds/pen; 8 pens/treatment): a nutrient adequate control group (PC), the PC supplemented with 0.3% myo-inositol (PC + MI), a negative control (NC) deficient in available P and Ca by 0.15 and 0.16%, respectively, the NC fed with quantum blue (QB) at 500 (NC + 500 FTU), 1,000 (NC + 1,000 FTU), or 2,000 FTU/kg of feed (NC + 2,000 FTU). Although QB-enriched diets did not affect growth performances (FCR and FE), it did reduce the severity of WB by 5% compared to the PC diet. This effect is mediated by reversing the expression profile of oxygen homeostasis-related genes; i.e., significant down regulation of HBBR and upregulation of HBM, HBZ, and HEPH in blood, as well as a significant upregulation of HBA1, HBBR, HBE, HBZ, and PHD2 in breast muscle compared to the positive control.

6.
J Anim Sci ; 97(9): 3907-3919, 2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31294448

RESUMEN

The objective of this present study was to determine the effects of phytase dosing on growth performance, mineral digestibility, phytate breakdown, and the level of glucose transporter type 4 (GLUT4) in muscle plasma membranes of weanling pigs. A total of 160 barrows were used in a randomized completely block design and assigned to 4 treatments for a 7-wk study. Depending on the feeding phase, diets differed in dietary calcium (Ca) and phosphorus (P) levels (positive control [PC]: 8 to 6.8g/kg Ca; 7.3 to 6.3 g/kg P; negative control [NC]: 5.5 to 5.2 g/kg Ca; 5.4 to 4.7 g/kg P). NC diets were supplemented with phytase at 0 (NC); 500 (NC + 500 FTU); or 2,000 FTU/kg (NC + 2,000 FTU) phytase units/kg. Blood was collected after fasting (day 48) or feeding (day 49) for measurement of plasma inositol concentrations. On day 49, 2 pigs per pen were euthanized, and duodenal and ileal digesta samples were collected to determine inositol phosphates (InsP6-2) concentrations. High phytase supplementation increased BW on days 21, 35, and 49 (P < 0.05). Over the entire feeding period, ADG, ADFI, and feed efficiency were increased by NC + 2,000 FTU compared with the other treatments (P < 0.05). Postprandial plasma inositol concentration was increased in NC + 2,000 (P < 0.01), but there was only a tendency (P = 0.06) of a higher fasting plasma inositol concentration in this group. Inositol concentrations in the portal vein plasma (day 49) were not different among treatments. Duodenal digesta InsP5 and InsP6 concentrations were similar in PC and NC, but higher in these 2 treatments (P < 0.05) than those supplemented with phytase. Phytase supplementation decreased InsP6-4, resulting in increased InsP3-2 and myo-inositol concentrations. Similar effects were found in ileal contents. Compared with NC, phytase supplementation resulted in greater cumulative InsP6-2 disappearance (93.6% vs. 72.8% vs. 25.0%, for NC + 2,000 FTU, NC + 500 FTU and NC, respectively, P < 0.01) till the distal ileum. Longissimus dorsi muscle plasma membrane GLUT4 concentration was increased by NC + 2,000 FTU (P < 0.01) compared with NC. In summary, high phytase supplementation increased growth performance of nursery pigs. The higher myo-inositol release from phytate could contribute to the increased expression of GLUT4 in muscle plasma membranes. Further investigation is needed to determine whether this is associated with enhanced cellular glucose uptake and utilization.


Asunto(s)
6-Fitasa/administración & dosificación , Suplementos Dietéticos/análisis , Transportador de Glucosa de Tipo 4/metabolismo , Inositol/sangre , Ácido Fítico/metabolismo , Porcinos/crecimiento & desarrollo , Alimentación Animal/análisis , Animales , Calcio de la Dieta/metabolismo , Membrana Celular/metabolismo , Dieta/veterinaria , Íleon/metabolismo , Fosfatos de Inositol/metabolismo , Masculino , Músculos/metabolismo , Fósforo Dietético/metabolismo , Porcinos/fisiología
7.
Environ Microbiol ; 19(7): 2740-2753, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28447381

RESUMEN

Phosphorus cycling exerts significant influence upon soil fertility and productivity - processes largely controlled by microbial activity. We adopted phenotypic and metagenomic approaches to investigate phosphatase genes within soils. Microbial communities in bare fallowed soil showed a marked capacity to utilise phytate for growth compared with arable or grassland soil communities. Bare fallowed soil contained lowest concentrations of orthophosphate. Analysis of metagenomes indicated phoA, phoD and phoX, and histidine acid and cysteine phytase genes were most abundant in grassland soil which contained the greatest amount of NaOH-EDTA extractable orthophosphate. Beta-propeller phytase genes were most abundant in bare fallowed soil. Phylogenetic analysis of metagenome sequences indicated the phenotypic shift observed in the capacity to mineralise phytate in bare fallow soil was accompanied by an increase in phoD, phoX and beta-propeller phytase genes coding for exoenzymes. However, there was a remarkable degree of genetic similarity across the soils despite the differences in land-use. Predicted extracellular ecotypes were distributed across a greater range of soil structure than predicted intracellular ecotypes, suggesting that microbial communities subject to the dual stresses of low nutrient availability and reduced access to organic material in bare fallowed soils rely upon the action of exoenzymes.


Asunto(s)
6-Fitasa/genética , Fosfatasa Alcalina/genética , Fósforo/metabolismo , Ácido Fítico/metabolismo , Microbiología del Suelo , 6-Fitasa/metabolismo , Fosfatasa Alcalina/metabolismo , Pradera , Metagenoma/genética , Filogenia , Suelo/química
8.
Biochem J ; 444(3): 601-9, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22429240

RESUMEN

Reduction of phytate is a major goal of plant breeding programs to improve the nutritional quality of crops. Remarkably, except for the storage organs of crops such as barley, maize and soybean, we know little of the stereoisomeric composition of inositol phosphates in plant tissues. To investigate the metabolic origins of higher inositol phosphates in photosynthetic tissues, we have radiolabelled leaf tissue of Solanum tuberosum with myo-[2-3H]inositol, undertaken a detailed analysis of inositol phosphate stereoisomerism and permeabilized mesophyll protoplasts in media containing inositol phosphates. We describe the inositol phosphate composition of leaf tissue and identify pathways of inositol phosphate metabolism that we reveal to be common to other kingdoms. Our results identify the metabolic origins of a number of higher inositol phosphates including ones that are precursors of cofactors, or cofactors of plant hormone-receptor complexes. The present study affords alternative explanations of the effects of disruption of inositol phosphate metabolism reported in other species, and identifies different inositol phosphates from that described in photosynthetic tissue of the monocot Spirodela polyrhiza. We define the pathways of inositol hexakisphosphate turnover and shed light on the occurrence of a number of inositol phosphates identified in animals, for which metabolic origins have not been defined.


Asunto(s)
Ácido Fítico/biosíntesis , Extractos Vegetales/biosíntesis , Reguladores del Crecimiento de las Plantas/biosíntesis , Transducción de Señal/fisiología , Solanum tuberosum , Fosfatos de Inositol/biosíntesis , Fosfatos de Inositol/aislamiento & purificación , Ligandos , Ácido Fítico/aislamiento & purificación , Extractos Vegetales/aislamiento & purificación , Reguladores del Crecimiento de las Plantas/aislamiento & purificación , Hojas de la Planta
9.
J Biol Chem ; 284(48): 33614-22, 2009 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-19797057

RESUMEN

Arabidopsis possesses a superfamily of ATP-binding cassette (ABC) transporters. Among these, the multidrug resistance-associated protein AtMRP5/AtABCC5 regulates stomatal aperture and controls plasma membrane anion channels of guard cells. Remarkably, despite the prominent role of AtMRP5 in conferring partial drought insensitivity upon Arabidopsis, we know little of the biochemical function of AtMRP5. Our phylogenetic analysis showed that AtMRP5 is closely related to maize MRP4, mutation of which confers a low inositol hexakisphosphate kernel phenotype. We now show that insertion mutants of AtMRP5 display a low inositol hexakisphosphate phenotype in seed tissue and that this phenotype is associated with alterations of mineral cation and phosphate status. By heterologous expression in yeast, we demonstrate that AtMRP5 encodes a specific and high affinity ATP-dependent inositol hexakisphosphate transporter that is sensitive to inhibitors of ABC transporters. Moreover, complementation of the mrp5-1 insertion mutants of Arabidopsis with the AtMRP5 cDNA driven from a guard cell-specific promoter restores the sensitivity of the mutant to abscisic acid-mediated inhibition of stomatal opening. Additionally, we show that mutation of residues of the Walker B motif prevents restoring the multiple phenotypes associated with mrp5-1. Our findings highlight a novel function of plant ABC transporters that may be relevant to other kingdoms. They also extend the signaling repertoire of this ubiquitous inositol polyphosphate signaling molecule.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Ácido Fítico/metabolismo , Transducción de Señal/fisiología , Adenilil Imidodifosfato/farmacología , Proteínas de Arabidopsis/genética , Transporte Biológico/efectos de los fármacos , Prueba de Complementación Genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Fosfatos de Inositol/metabolismo , Microscopía Confocal , Microsomas/efectos de los fármacos , Microsomas/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Mutación , Fósforo/metabolismo , Epidermis de la Planta/citología , Epidermis de la Planta/efectos de los fármacos , Epidermis de la Planta/metabolismo , Estomas de Plantas/fisiología , Plantas Modificadas Genéticamente , Semillas/genética , Semillas/metabolismo , Levaduras/genética , Levaduras/metabolismo
10.
Plant J ; 56(4): 638-52, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18643983

RESUMEN

Phytic acid (myo-inositol hexakisphosphate, InsP6) is an important phosphate store and signal molecule in plants. However, low-phytate plants are being developed to minimize the negative health effects of dietary InsP6 and pollution caused by undigested InsP6 in animal waste. InsP6 levels were diminished in transgenic potato plants constitutively expressing an antisense gene sequence for myo-inositol 3-phosphate synthase (IPS, catalysing the first step in InsP6 biosynthesis) or Escherichia coli polyphosphate kinase. These plants were less resistant to the avirulent pathogen potato virus Y and the virulent pathogen tobacco mosaic virus (TMV). In Arabidopsis thaliana, mutation of the gene for the enzyme catalysing the final step of InsP6 biosynthesis (InsP5 2-kinase) also diminished InsP6 levels and enhanced susceptibility to TMV and to virulent and avirulent strains of the bacterial pathogen Pseudomonas syringae. Arabidopsis thaliana has three IPS genes (AtIPS1-3). Mutant atips2 plants were depleted in InsP6 and were hypersusceptible to TMV, turnip mosaic virus, cucumber mosaic virus and cauliflower mosaic virus as well as to the fungus Botrytis cinerea and to P. syringae. Mutant atips2 and atipk1 plants were as hypersusceptible to infection as plants unable to accumulate salicylic acid (SA) but their increased susceptibility was not due to reduced levels of SA. In contrast, mutant atips1 plants, which were also depleted in InsP6, were not compromised in resistance to pathogens, suggesting that a specific pool of InsP6 regulates defence against phytopathogens.


Asunto(s)
Arabidopsis/metabolismo , Mio-Inositol-1-Fosfato Sintasa/metabolismo , Ácido Fítico/biosíntesis , Proteínas de Plantas/metabolismo , Solanum tuberosum/metabolismo , Arabidopsis/genética , Arabidopsis/microbiología , Arabidopsis/virología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Botrytis/patogenicidad , Caulimovirus/patogenicidad , Cucumovirus/patogenicidad , ADN Bacteriano/genética , Susceptibilidad a Enfermedades/microbiología , Susceptibilidad a Enfermedades/virología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Inmunidad Innata/genética , Mutagénesis Insercional , Mutación , Mio-Inositol-1-Fosfato Sintasa/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/microbiología , Plantas Modificadas Genéticamente/virología , Potyvirus/patogenicidad , Pseudomonas syringae/patogenicidad , ARN de Planta/genética , Ácido Salicílico/metabolismo , Transducción de Señal , Solanum tuberosum/genética , Solanum tuberosum/virología , Virus del Mosaico del Tabaco/patogenicidad , Tymovirus/patogenicidad
11.
FEBS Lett ; 582(12): 1731-7, 2008 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-18442482

RESUMEN

We describe a multifunctional inositol polyphosphate kinase/phosphotransferase from Solanum tuberosum, StITPKalpha (GenBank accession number: EF362784), hereafter called StITPK1. StITPK1 displays inositol 3,4,5,6-tetrakisphosphate 1-kinase activity: K(m) = 27 microM, and V(max) = 19 nmol min(-1) mg(-1). The enzyme displays inositol 1,3,4,5,6-pentakisphosphate 1-phosphatase activity in the absence of a nucleotide acceptor and inositol 1,3,4,5,6-pentakisphosphate-ADP phosphotransferase activity in the presence of physiological concentrations of ADP. Additionally, StITPK1 shows inositol phosphate-inositol phosphate phosphotransferase activity. Homology modelling provides a structural rationale of the catalytic abilities of StITPK1. Inter-substrate transfer of phosphate groups between inositol phosphates is an evolutionarily conserved function of enzymes of this class.


Asunto(s)
Adenosina Difosfato/química , Fosfatos de Inositol/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Proteínas de Plantas/química , Solanum tuberosum/enzimología , Secuencia de Aminoácidos , Catálisis , Clonación Molecular , Datos de Secuencia Molecular , Monoéster Fosfórico Hidrolasas/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas de Plantas/genética , Estructura Secundaria de Proteína , Especificidad por Sustrato
12.
Biochem J ; 403(3): 381-9, 2007 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-17274762

RESUMEN

Inositol phosphates and the enzymes that interconvert them are key regulators of diverse cellular processes including the transcriptional machinery of arginine synthesis [York (2006) Biochim. Biophys. Acta 1761, 552-559]. Despite considerable interest and debate surrounding the role of Saccharomyces cerevisiae inositol polyphosphate kinase (ScIPK2, ARG82, ARGRIII) and its inositol polyphosphate products in these processes, there is an absence of data describing how the transcripts of the arginine synthetic pathway, and the amino acid content of ScIpk2Delta, are altered under different nutrient regimes. We have cloned an IPMK (inositol phosphate multikinase) from Solanum tuberosum, StIPMK (GenBank(R) accession number EF362785), that despite considerable sequence divergence from ScIPK2, restores the arginine biosynthesis pathway transcripts ARG8, acetylornithine aminotransferase, and ARG3, ornithine carbamoyltransferase of ScIpk2Delta yeast to wild-type profiles. StIPMK also restores the amino acid profiles of mutant yeast to wild-type, and does so with ornithine or arginine as the sole nitrogen sources. Our data reveal a lysine accumulation phenotype in ScIpk2Delta yeast that is restored to a wild-type profile by expression of StIPMK, including restoration of the transcript profiles of lysine biosynthetic genes. The StIPMK protein shows only 18.6% identity with ScIPK2p which probably indicates that the rescue of transcript and diverse amino acid phenotypes is not mediated through a direct interaction of StIPMK with the ArgR-Mcm1 transcription factor complex that is a molecular partner of ScIPK2p.


Asunto(s)
Lisina/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Solanum tuberosum/enzimología , Secuencia de Aminoácidos , Arginina/biosíntesis , Clonación Molecular , Datos de Secuencia Molecular , Ornitina/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/fisiología , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Alineación de Secuencia
13.
J Biol Chem ; 280(41): 34888-99, 2005 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-16081412

RESUMEN

Diacylglycerol kinase (DGK) regulates the level of the second messenger diacylglycerol and produces phosphatidic acid (PA), another signaling molecule. The Arabidopsis thaliana genome encodes seven putative diacylglycerol kinase isozymes (named AtDGK1 to -7), structurally falling into three major clusters. So far, enzymatic activity has not been reported for any plant Cluster II DGK. Here, we demonstrate that a representative of this cluster, AtDGK7, is biochemically active when expressed as a recombinant protein in Escherichia coli. AtDGK7, encoded by gene locus At4g30340, contains 374 amino acids with an apparent molecular mass of 41.2 kDa. AtDGK7 harbors an N-terminal catalytic domain, but in contrast to various characterized DGKs (including AtDGK2), it lacks a cysteine-rich domain at its N terminus, and, importantly, its C-terminal DGK accessory domain is incomplete. Recombinant AtDGK7 expressed in E. coli exhibits Michaelis-Menten type kinetics with 1,2-dioleoyl-sn-glycerol as substrate. AtDGK7 activity was affected by pH, detergents, and the DGK inhibitor R59022. We demonstrate that both AtDGK2 and AtDGK7 phosphorylate diacylglycerol molecular species that are typically found in plants, indicating that both enzymes convert physiologically relevant substrates. AtDGK7 is expressed throughout the Arabidopsis plant, but expression is strongest in flowers and young seedlings. Expression of AtDGK2 is transiently induced by wounding. R59022 at approximately 80 mum inhibits root elongation and lateral root formation and reduces plant growth, indicating that DGKs play an important role in plant development.


Asunto(s)
Arabidopsis/enzimología , Arabidopsis/genética , Diacilglicerol Quinasa/genética , Diacilglicerol Quinasa/fisiología , Adenosina Trifosfato/química , Secuencia de Aminoácidos , Arabidopsis/química , Bacterias/metabolismo , Western Blotting , Cromatografía Líquida de Alta Presión , Clonación Molecular , Cisteína/química , ADN Complementario/metabolismo , Detergentes/farmacología , Diglicéridos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Escherichia coli/metabolismo , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Glicerol/análogos & derivados , Glicerol/química , Concentración de Iones de Hidrógeno , Cinética , Modelos Genéticos , Datos de Secuencia Molecular , Familia de Multigenes , Ácidos Oléicos/química , Ácidos Fosfatidicos/química , Proteínas de Plantas/química , Raíces de Plantas/metabolismo , Estructura Terciaria de Proteína , Pirimidinonas/farmacología , Proteínas Recombinantes/química , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Transducción de Señal , Especificidad por Sustrato , Tiazoles/farmacología , Factores de Tiempo
14.
Plant Physiol ; 137(1): 94-103, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15618435

RESUMEN

Inositol polyphosphates, such as inositol trisphosphate, are pivotal intracellular signaling molecules in eukaryotic cells. In higher plants the mechanism for the regulation of the type and the level of these signaling molecules is poorly understood. In this study we investigate the physiological function of an Arabidopsis (Arabidopsis thaliana) gene encoding inositol polyphosphate kinase (AtIPK2alpha), which phosphorylates inositol 1,4,5-trisphosphate successively at the D-6 and D-3 positions, and inositol 1,3,4,5-tetrakisphosphate at D-6, resulting in the generation of inositol 1,3,4,5,6-pentakisphosphate. Semiquantitative reverse transcription-PCR and promoter-beta-glucuronidase reporter gene analyses showed that AtIPK2alpha is expressed in various tissues, including roots and root hairs, stem, leaf, pollen grains, pollen tubes, the flower stigma, and siliques. Transgenic Arabidopsis plants expressing the AtIPK2alpha antisense gene under its own promoter were generated. Analysis of several independent transformants exhibiting strong reduction in AtIPK2alpha transcript levels showed that both pollen germination and pollen tube growth were enhanced in the antisense lines compared to wild-type plants, especially in the presence of nonoptimal low Ca(2+) concentrations in the culture medium. Furthermore, root growth and root hair development were also stimulated in the antisense lines, in the presence of elevated external Ca(2+) concentration or upon the addition of EGTA. In addition, seed germination and early seedling growth was stimulated in the antisense lines. These observations suggest a general and important role of AtIPK2alpha, and hence inositol polyphosphate metabolism, in the regulation of plant growth most likely through the regulation of calcium signaling, consistent with the well-known function of inositol trisphosphate in the mobilization of intracellular calcium stores.


Asunto(s)
Arabidopsis/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/fisiología , Raíces de Plantas/enzimología , Polen/enzimología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis , Calcio , Membrana Celular/enzimología , Núcleo Celular/enzimología , ADN Complementario , Expresión Génica , Datos de Secuencia Molecular , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Raíces de Plantas/crecimiento & desarrollo , Polen/fisiología
15.
J Biol Chem ; 279(9): 8230-41, 2004 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-14665624

RESUMEN

Diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DAG) to generate phosphatidic acid (PA). Both DAG and PA are implicated in signal transduction pathways. DGKs have been widely studied in animals, but their analysis in plants is fragmentary. Here, we report the cloning and biochemical characterization of AtDGK2, encoding DGK from Arabidopsis thaliana. AtDGK2 has a predicted molecular mass of 79.4 kDa and, like AtDGK1 previously reported, harbors two copies of a phorbol ester/DAG-binding domain in its N-terminal region. AtDGK2 belongs to a family of seven DGK genes in A. thaliana. AtDGK3 to AtDGK7 encode approximately 55-kDa DGKs that lack a typical phorbol ester/DAG-binding domain. Phylogenetically, plant DGKs fall into three clusters. Members of all three clusters are widely expressed in vascular plants. Recombinant AtDGK2 was expressed in Escherichia coli and biochemically characterized. The enzyme phosphorylated 1,2-dioleoyl-sn-glycerol to yield PA, exhibiting Michaelis-Menten type kinetics. Estimated K(m) and V(max) values were 125 microm for DAG and 0.25 pmol of PA min(-1) microg(-1), respectively. The enzyme was maximally active at pH 7.2. Its activity was Mg(2+)-dependent and affected by the presence of detergents, salts, and the DGK inhibitor R59022, but not by Ca(2+). AtDGK2 exhibited substrate preference for unsaturated DAG analogues (i.e. 1-stearoyl-2-arachidonoyl-sn-glycerol and 1,2-dioleoyl-sn-glycerol). The AtDGK2 gene is expressed in various tissues of the Arabidopsis plant, including leaves, roots, and flowers, as shown by Northern blot analysis and promoter-reporter gene fusions. We found that AtDGK2 is induced by exposure to low temperature (4 degrees C), pointing to a role in cold signal transduction.


Asunto(s)
Arabidopsis/enzimología , Diacilglicerol Quinasa/genética , Diacilglicerol Quinasa/metabolismo , Diglicéridos/metabolismo , Expresión Génica , Secuencia de Aminoácidos , Arabidopsis/genética , Frío , ADN Complementario/aislamiento & purificación , ADN de Plantas/aislamiento & purificación , Diacilglicerol Quinasa/química , Flores/enzimología , Concentración de Iones de Hidrógeno , Isoenzimas/química , Cinética , Magnesio/farmacología , Datos de Secuencia Molecular , Fosforilación , Filogenia , Hojas de la Planta/enzimología , Raíces de Plantas/embriología , Transducción de Señal , Especificidad por Sustrato
16.
Plant Cell ; 15(2): 449-63, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12566584

RESUMEN

Inositol 1,4,5-trisphosphate 3-kinase, and more generally inositol polyphosphate kinases (Ipk), play important roles in signal transduction in animal cells; however, their functions in plant cells remain to be elucidated. Here, we report the molecular cloning of a cDNA (AtIpk2beta) from a higher plant, Arabidopsis. Arabidopsis AtIpk2beta is a 33-kD protein that exhibits weak homology ( approximately 25% identical amino acids) with Ipk proteins from animals and yeast and lacks a calmodulin binding site, as revealed by sequence analysis and calmodulin binding assays. However, recombinant AtIpk2beta phosphorylates inositol 1,4,5-trisphosphate to inositol 1,4,5,6-tetrakisphosphate and also converts it to inositol 1,3,4,5,6-pentakisphosphate [Ins(1,3,4,5,6)P(5)]. AtIpk2beta also phosphorylates inositol 1,3,4,5-tetrakisphosphate to Ins(1,3,4,5,6)P(5). Thus, the enzyme is a D3/D6 dual-specificity inositol phosphate kinase. AtIpk2beta complements a yeast ARG82/IPK2 mutant lacking a functional ArgR-Mcm1 transcription complex. This complex is involved in regulating Arg metabolism-related gene expression and requires inositol polyphosphate kinase activity to function. AtIpk2beta was found to be located predominantly in the nucleus of plant cells, as demonstrated by immunolocalization and fusion to green fluorescent protein. RNA gel blot analysis and promoter-beta-glucuronidase reporter gene studies demonstrated AtIpk2beta gene expression in various organs tested. These data suggest a role for AtIpk2beta as a transcriptional control mediator in plants.


Asunto(s)
Arabidopsis/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Arginina/metabolismo , Clonación Molecular , ADN Complementario/química , ADN Complementario/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Proteínas Fluorescentes Verdes , Fosfatos de Inositol/biosíntesis , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteína 1 de Mantenimiento de Minicromosoma/genética , Proteína 1 de Mantenimiento de Minicromosoma/metabolismo , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Plantas Modificadas Genéticamente , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Análisis de Secuencia , Homología de Secuencia de Aminoácido , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA