Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Biol Macromol ; 238: 124087, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-36940766

RESUMEN

Gas therapy based on nitric oxide (NO) has emerged as a potential therapeutic approach for cancer, and in conjunction with multi-mode combination therapy, offers new possibilities for achieving significant hyperadditive effects. In this study, an integrated AI-MPDA@BSA nanocomposite for diagnosis and treatment was constructed for PDA based photoacoustic imaging (PAI) and cascade NO release. Natural NO donor L-arginine (L-Arg) and photosensitizer (PS) IR780 were loaded into mesoporous polydopamine (MPDA). Bovine serum albumin (BSA) was conjugated to the MPDA to increase the dispersibility and biocompatibility of the nanoparticles, as well as to serve as a gatekeeper controlling IR780 release from the MPDA pores. The AI-MPDA@BSA produced singlet oxygen (1O2) and converted it into NO through a chain reaction based on L-Arg, enabling a combination of photodynamic therapy and gas therapy. Moreover, due to the photothermal properties of MPDA, the AI-MPDA@BSA performed good photothermal conversion, which allowed photoacoustic imaging. As expected, both in vitro and in vivo studies have confirmed that the AI-MPDA@BSA nanoplatform has a significant inhibitory effect on cancer cells and tumors, and no apparent systemic toxicity or side effects were detected during the treatment period.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Fototerapia/métodos , Albúmina Sérica Bovina , Óxido Nítrico , Neoplasias/terapia
2.
Colloids Surf B Biointerfaces ; 210: 112261, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34902711

RESUMEN

In this work, a novel layered double hydroxide (LDH)-based multifunctional nanoplatform was built for synergistic photothermal therapy (PTT)/chemotherapy. The platform was modified using the peptide B3int to target cancer cells with overexpression of integrin αvß3. Indocyanine green (ICG) and doxorubicin (DOX) were loaded into the nanocarrier (LDH-PEG-B3int NPs) to form a system having a high drug loading (18.62%) and a remarkable photothermal conversion efficiency of 25.38%. It also showed pH-responsive and near-infrared (NIR)-triggered DOX release. In vitro and in vivo studies indicated that the anti-tumor activity of the combined delivery system was significantly higher than that of a single delivery system. This co-delivery nanosystem may be helpful for future application in the clinical treatment of cancer.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Hidróxidos , Fototerapia , Terapia Fototérmica
3.
Colloids Surf B Biointerfaces ; 185: 110585, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31683203

RESUMEN

Synergistic tumor treatment has recently attracted more and more attention due to its remarkable therapeutic effect. Herein, a multifunctional drug delivery system based on hyaluronic acid (HA) targeted dual stimulation responsive MoS2 nanosheets (HA-PEI-LA-MoS2-PEG, HPMP) for active interaction with CD44 receptor positive MCF-7 cells is reported. Melanin (Mel), a new type of photothermal agent and doxorubicin (DOX) are both loaded onto the HPMP nanocomposite and can be released by mild acid or hyperthermia. The prepared HPMP nanocomposite has a uniform hydrodynamic diameter (104 nm), a high drug loading (944.3 mg.g-1 HPMP), a remarkable photothermal effect (photothermal conversion efficiency: 55.3%) and excellent biocompatibility. The DOX release from HPMP@(DOX/Mel) can be precisely controlled by the dual stimuli of utilizing the acidic environment in the tumor cells and external laser irradiation. Meanwhile, loading of Mel onto the surface can enhance the photothermal effect of the MoS2 nanosheets. In vitro experiments showed that the HPMP@(DOX/Mel) nanoplatform could efficiently deliver DOX into MCF-7 cells and demonstrated enhanced cytotoxicity compared to that of the non-targeted nanoplatform. In vivo experiments in a breast cancer model of nude mice further confirmed that the HPMP@(DOX/Mel) significantly inhibited tumor growth under near infrared (NIR) laser irradiation, which is superior to any single therapy. In summary, this flexible nanoplatform, based on multi-faceted loaded MoS2 nanosheets, exhibits considerable potential for efficient pH/NIR-responsive targeted drug delivery and chemo-photothermal synergistic tumor therapy.


Asunto(s)
Neoplasias de la Mama/terapia , Disulfuros/química , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos , Hipertermia Inducida , Molibdeno/química , Nanocompuestos/química , Fototerapia , Animales , Antibióticos Antineoplásicos/farmacología , Apoptosis , Neoplasias de la Mama/patología , Proliferación Celular , Doxorrubicina/química , Liberación de Fármacos , Femenino , Humanos , Rayos Infrarrojos , Ratones , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
4.
ACS Appl Mater Interfaces ; 10(49): 42115-42126, 2018 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-30462492

RESUMEN

Noninvasive physical treatment with relatively low intensity stimulation and the development of highly efficient anticancer medical strategy are still desirable for cancer therapy. Herein a versatile, biodegradable, hollow mesoporous organosilica nanocapsule (HMONs) nanoplatform that is capped by the gemcitabine (Gem) molecule through a pH-sensitive acetal covalent bond is designed. The fabricated nanocapsule exhibits desirable small molecule release at the tumor tissues/cell sites and shows a reduced risk for drug accumulation. After loading indocyanine green (ICG), the heat-shock protein 90 (Hsp 90) inhibitor, and 17AAG and modification with polyethylene glycol (NH2-PEG), the resulting ICG-17AAG@HMONs-Gem-PEG exhibited a precisely controlled release of ICG and 17AAG and low-temperature photothermal therapy (PTT) (∼41 °C) with excellent tumor destruction efficacy. In addition, ICG loading conferred the nanoplatform with near-infrared fluorescence imaging (FL) and photoaccoustic (PA) imaging capability. In short, this work not only presents a smart drug self-controlled nanoplatform with pH-responsive payload release and theranostic performance but also provides an outstanding low-temperature PTT strategy, which is highly valid in the inhibition of cancer cells with minimal damage to the organism. Therefore, this research provides a paradigm that has a chemodrug-gated HMONs-based theranostic nanoplatform with intrinsic biodegradability, multimodal imaging capacity, high low-temperature PTT/chemotherapy efficacy, and reduced systemic toxicity.


Asunto(s)
Doxorrubicina , Hipertermia Inducida , Verde de Indocianina , Nanocápsulas , Compuestos de Organosilicio , Fototerapia , Animales , Línea Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Humanos , Verde de Indocianina/química , Verde de Indocianina/farmacocinética , Verde de Indocianina/farmacología , Ratones , Ratones Desnudos , Nanocápsulas/química , Nanocápsulas/uso terapéutico , Compuestos de Organosilicio/química , Compuestos de Organosilicio/farmacocinética , Compuestos de Organosilicio/farmacología , Polietilenglicoles/química , Polietilenglicoles/farmacocinética , Polietilenglicoles/farmacología
5.
Ultrason Sonochem ; 27: 509-514, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26186873

RESUMEN

This study examined anthocyanin extraction using the application of ultrasound to raw freeze dried, microwaved and raw sliced Purple Majesty potato, a new pigmented potato variety rich in anthocyanins. A 20 kHz probe was used for the sonication at 3 different amplitudes (30%, 50% and 70%) and ethanol in water at different ratios (50:50 and 70:30 v/v) was used for the extraction. Anthocyanin extraction from raw freeze dried purple potato was optimal at an ethanol:water ratio (70:30; v/v) after 5 min of ultrasonication, while the least amount of anthocyanins was extracted from raw sliced potatoes. The application of microwaves (as a pre-treatment) before the UAE resulted in an increase in the amount of anthocyanins extracted and a decrease in the amount of solvent used. Analysis of variance showed that potato form, ultrasonication time, ultrasonication amplitude and solvent ratio as well as two and three way interactions between some of these factors had a very significant effect (p<0.000) on the amount of anthocyanins extracted.


Asunto(s)
Antocianinas/aislamiento & purificación , Fraccionamiento Químico/métodos , Solanum tuberosum/química , Ondas Ultrasónicas , Criopreservación , Etanol/química , Microondas , Solventes/química , Factores de Tiempo , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA